ترغب بنشر مسار تعليمي؟ اضغط هنا

End-to-end Semantic Role Labeling with Neural Transition-based Model

73   0   0.0 ( 0 )
 نشر من قبل Hao Fei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

End-to-end semantic role labeling (SRL) has been received increasing interest. It performs the two subtasks of SRL: predicate identification and argument role labeling, jointly. Recent work is mostly focused on graph-based neural models, while the transition-based framework with neural networks which has been widely used in a number of closely-related tasks, has not been studied for the joint task yet. In this paper, we present the first work of transition-based neural models for end-to-end SRL. Our transition model incrementally discovers all sentential predicates as well as their arguments by a set of transition actions. The actions of the two subtasks are executed mutually for full interactions. Besides, we suggest high-order compositions to extract non-local features, which can enhance the proposed transition model further. Experimental results on CoNLL09 and Universal Proposition Bank show that our final model can produce state-of-the-art performance, and meanwhile keeps highly efficient in decoding. We also conduct detailed experimental analysis for a deep understanding of our proposed model.



قيم البحث

اقرأ أيضاً

We present a graph-based Tree Adjoining Grammar (TAG) parser that uses BiLSTMs, highway connections, and character-level CNNs. Our best end-to-end parser, which jointly performs supertagging, POS tagging, and parsing, outperforms the previously repor ted best results by more than 2.2 LAS and UAS points. The graph-based parsing architecture allows for global inference and rich feature representations for TAG parsing, alleviating the fundamental trade-off between transition-based and graph-based parsing systems. We also demonstrate that the proposed parser achieves state-of-the-art performance in the downstream tasks of Parsing Evaluation using Textual Entailments (PETE) and Unbounded Dependency Recovery. This provides further support for the claim that TAG is a viable formalism for problems that require rich structural analysis of sentences.
90 - Zuchao Li , Hai Zhao , Shexia He 2020
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; h owever, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning-based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. Furthermore, we show the quantitative significance of syntax to neural SRL models together with a thorough empirical survey using existing models.
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supe rtags, along with words and parts of speech, into a deep highway BiLSTM for semantic role labeling. Our model combines the strengths of earlier models that performed SRL on the basis of a full dependency parse with more recent models that use no syntactic information at all. Our local and non-ensemble model achieves state-of-the-art performance on the CoNLL 09 English and Spanish datasets. SRL models benefit from syntactic information, and we show that supertagging is a simple, powerful, and robust way to incorporate syntax into a neural SRL system.
Semantic role labeling (SRL), also known as shallow semantic parsing, is an important yet challenging task in NLP. Motivated by the close correlation between syntactic and semantic structures, traditional discrete-feature-based SRL approaches make he avy use of syntactic features. In contrast, deep-neural-network-based approaches usually encode the input sentence as a word sequence without considering the syntactic structures. In this work, we investigate several previous approaches for encoding syntactic trees, and make a thorough study on whether extra syntax-aware representations are beneficial for neural SRL models. Experiments on the benchmark CoNLL-2005 dataset show that syntax-aware SRL approaches can effectively improve performance over a strong baseline with external word representations from ELMo. With the extra syntax-aware representations, our approaches achieve new state-of-the-art 85.6 F1 (single model) and 86.6 F1 (ensemble) on the test data, outperforming the corresponding strong baselines with ELMo by 0.8 and 1.0, respectively. Detailed error analysis are conducted to gain more insights on the investigated approaches.
We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call Neural-Davidsonian: predicate-argument structure is represented as pairs of hidden states corresponding to predicate and arg ument head tokens of the input sequence. We demonstrate: (1) state-of-the-art results in SPRL, and (2) that our network naturally shares parameters between attributes, allowing for learning new attribute types with limited added supervision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا