ﻻ يوجد ملخص باللغة العربية
We present a model for semantic proto-role labeling (SPRL) using an adapted bidirectional LSTM encoding strategy that we call Neural-Davidsonian: predicate-argument structure is represented as pairs of hidden states corresponding to predicate and argument head tokens of the input sequence. We demonstrate: (1) state-of-the-art results in SPRL, and (2) that our network naturally shares parameters between attributes, allowing for learning new attribute types with limited added supervision.
Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument structure of a sentence. Previous studies in terms of traditional models have shown syntactic information can make remarkable contributions to SRL performance; h
Semantic role labeling (SRL), also known as shallow semantic parsing, is an important yet challenging task in NLP. Motivated by the close correlation between syntactic and semantic structures, traditional discrete-feature-based SRL approaches make he
We introduce a new syntax-aware model for dependency-based semantic role labeling that outperforms syntax-agnostic models for English and Spanish. We use a BiLSTM to tag the text with supertags extracted from dependency parses, and we feed these supe
Semantic role labeling (SRL) aims to extract the arguments for each predicate in an input sentence. Traditional SRL can fail to analyze dialogues because it only works on every single sentence, while ellipsis and anaphora frequently occur in dialogue
Semantic role labeling is primarily used to identify predicates, arguments, and their semantic relationships. Due to the limitations of modeling methods and the conditions of pre-identified predicates, previous work has focused on the relationships b