ﻻ يوجد ملخص باللغة العربية
Current open-domain question answering systems often follow a Retriever-Reader architecture, where the retriever first retrieves relevant passages and the reader then reads the retrieved passages to form an answer. In this paper, we propose a simple and effective passage reranking method, named Reader-guIDEd Reranker (RIDER), which does not involve training and reranks the retrieved passages solely based on the top predictions of the reader before reranking. We show that RIDER, despite its simplicity, achieves 10 to 20 absolute gains in top-1 retrieval accuracy and 1 to 4 Exact Match (EM) gains without refining the retriever or reader. In addition, RIDER, without any training, outperforms state-of-the-art transformer-based supervised rerankers. Remarkably, RIDER achieves 48.3 EM on the Natural Questions dataset and 66.4 EM on the TriviaQA dataset when only 1,024 tokens (7.8 passages on average) are used as the reader input after passage reranking.
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically
Most state-of-the-art open-domain question answering systems use a neural retrieval model to encode passages into continuous vectors and extract them from a knowledge source. However, such retrieval models often require large memory to run because of
The current state-of-the-art generative models for open-domain question answering (ODQA) have focused on generating direct answers from unstructured textual information. However, a large amount of worlds knowledge is stored in structured databases, a
To date, most of recent work under the retrieval-reader framework for open-domain QA focuses on either extractive or generative reader exclusively. In this paper, we study a hybrid approach for leveraging the strengths of both models. We apply novel
Recent work on Open Domain Question Answering has shown that there is a large discrepancy in model performance between novel test questions and those that largely overlap with training questions. However, it is as of yet unclear which aspects of nove