ترغب بنشر مسار تعليمي؟ اضغط هنا

Unifying Discourse Resources with Dependency Framework

154   0   0.0 ( 0 )
 نشر من قبل Yi Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For text-level discourse analysis, there are various discourse schemes but relatively few labeled data, because discourse research is still immature and it is labor-intensive to annotate the inner logic of a text. In this paper, we attempt to unify multiple Chinese discourse corpora under different annotation schemes with discourse dependency framework by designing semi-automatic methods to convert them into dependency structures. We also implement several benchmark dependency parsers and research on how they can leverage the unified data to improve performance.



قيم البحث

اقرأ أيضاً

We present an approach to combining distributional semantic representations induced from text corpora with manually constructed lexical-semantic networks. While both kinds of semantic resources are available with high lexical coverage, our aligned re source combines the domain specificity and availability of contextual information from distributional models with the conciseness and high quality of manually crafted lexical networks. We start with a distributional representation of induced senses of vocabulary terms, which are accompanied with rich context information given by related lexical items. We then automatically disambiguate such representations to obtain a full-fledged proto-conceptualization, i.e. a typed graph of induced word senses. In a final step, this proto-conceptualization is aligned to a lexical ontology, resulting in a hybrid aligned resource. Moreover, unmapped induced senses are associated with a semantic type in order to connect them to the core resource. Manual evaluations against ground-truth judgments for different stages of our method as well as an extrinsic evaluation on a knowledge-based Word Sense Disambiguation benchmark all indicate the high quality of the new hybrid resource. Additionally, we show the benefits of enriching top-down lexical knowledge resources with bottom-up distributional information from text for addressing high-end knowledge acquisition tasks such as cleaning hypernym graphs and learning taxonomies from scratch.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
QDMR is a meaning representation for complex questions, which decomposes questions into a sequence of atomic steps. While state-of-the-art QDMR parsers use the common sequence-to-sequence (seq2seq) approach, a QDMR structure fundamentally describes l abeled relations between spans in the input question, and thus dependency-based approaches seem appropriate for this task. In this work, we present a QDMR parser that is based on dependency graphs (DGs), where nodes in the graph are words and edges describe logical relations that correspond to the different computation steps. We propose (a) a non-autoregressive graph parser, where all graph edges are computed simultaneously, and (b) a seq2seq parser that uses gold graph as auxiliary supervision. We find that a graph parser leads to a moderate reduction in performance (0.47 to 0.44), but to a 16x speed-up in inference time due to the non-autoregressive nature of the parser, and to improved sample complexity compared to a seq2seq model. Second, a seq2seq model trained with auxiliary graph supervision has better generalization to new domains compared to a seq2seq model, and also performs better on questions with long sequences of computation steps.
This report describes Athena, a dialogue system for spoken conversation on popular topics and current events. We develop a flexible topic-agnostic approach to dialogue management that dynamically configures dialogue based on general principles of ent ity and topic coherence. Athenas dialogue manager uses a contract-based method where discourse constraints are dispatched to clusters of response generators. This allows Athena to procure responses from dynamic sources, such as knowledge graph traversals and feature-based on-the-fly response retrieval methods. After describing the dialogue system architecture, we perform an analysis of conversations that Athena participated in during the 2019 Alexa Prize Competition. We conclude with a report on several user studies we carried out to better understand how individual user characteristics affect system ratings.
260 - Juntao Yu , Bernd Bohnet 2016
In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5 points for English.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا