ﻻ يوجد ملخص باللغة العربية
Quantum coherence in solid-state systems has been demonstrated in superconducting circuits and in semiconductor quantum dots. This has paved the way to investigate solid-state systems for quantum information processing with the potential benefit of scalability compared to other systems based on atoms, ions and photons. Coherent coupling of superconducting circuits to microwave photons, circuit quantum electrodynamics (QED), has opened up new research directions and enabled long distance coupling of qubits. Here we demonstrate how the electromagnetic field of a superconducting microwave resonator can be coupled to a semiconductor double quantum dot. The charge stability diagram of the double dot, typically measured by direct current (DC) transport techniques, is investigated via dispersive frequency shifts of the coupled resonator. This hybrid all-solid-state approach offers the potential to coherently couple multiple quantum dot and superconducting qubits together on one chip, and offers a method for high resolution spectroscopy of semiconductor quantum structures.
We propose a current correlation spectrum approach to probe the quantum behaviors of a nanome-chanical resonator (NAMR). The NAMR is coupled to a double quantum dot (DQD), which acts as a quantum transducer and is further coupled to a quantum-point c
We study the cooling of a mechanical resonator (MR) that is capacitively coupled to a double quantum dot (DQD). The MR is cooled by the dynamical backaction induced by the capacitive coupling between the DQD and the MR. The DQD is excited by a microw
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mech
As an application in circuit quantum electrodynamics (cQED) coupled systems, superconducting resonators play an important role in high-sensitivity measurements in a superconductingsemiconductor hybrid architecture. Taking advantage of a high-impedanc
We consider the coupling of a single mode microwave resonator to a tunnel junction whose contacts are at thermal equilibrium. We derive the quantum master equation describing the evolution of the resonator field in the strong coupling regime, where t