ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunneling of multi-Weyl semimetals through a potential barrier under the influence of magnetic fields

42   0   0.0 ( 0 )
 نشر من قبل Ipsita Mandal
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the tunneling of the quasiparticles arising in multi-Weyl semimetals through a barrier consisting of both electrostatic and vector potentials, existing uniformly in a finite region along the transmission axis. The dispersion of a multi-Weyl semimetal is linear in one direction (say, $k_z$), and proportional to $k_perp^J$ in the plane perpendicular to it (where $k_perp =sqrt{k_x^2+k_y^2}$). Hence, we study the cases when the barrier is perpendicular to $k_z$ and $k_x$, respectively. For comparison, we also state the corresponding results for the Weyl semimetal.

قيم البحث

اقرأ أيضاً

Multi-Weyl semimetals are new types of Weyl semimetals which have anisotropic non-linear energy dispersion and a topological charge larger than one, thus exhibiting a unique quantum response. Using a unified lattice model, we calculate the optical co nductivity numerically in the multi-Weyl semimetal phase and in its neighboring gapped states, and obtain the characteristic frequency dependence of each phase analytically using a low-energy continuum model. The frequency dependence of longitudinal and transverse optical conductivities obeys scaling relations that are derived from the winding number of the parent multi-Weyl semimetal phase and can be used to distinguish these electronic states of matter.
We review our recent works on the quantum transport, mainly in topological semimetals and also in topological insulators, organized according to the strength of the magnetic field. At weak magnetic fields, we explain the negative magnetoresistance in topological semimetals and topological insulators by using the semiclassical equations of motion with the nontrivial Berry curvature. We show that the negative magnetoresistance can exist without the chiral anomaly. At strong magnetic fields, we establish theories for the quantum oscillations in topological Weyl, Dirac, and nodal-line semimetals. We propose a new mechanism of 3D quantum Hall effect, via the wormhole tunneling through the Weyl orbit formed by the Fermi arcs and Weyl nodes in topological semimetals. In the quantum limit at extremely strong magnetic fields, we find that an unexpected Hall resistance reversal can be understood in terms of the Weyl fermion annihilation. Additionally, in parallel magnetic fields, longitudinal resistance dips in the quantum limit can serve as signatures for topological insulators.
Even if Weyl semimetals are characterized by quasiparticles with well-defined chirality, exploiting this experimentally is severely hampered by Weyl lattice-fermions coming in pairs with opposite chirality, typically causing the net chirality picked up by experimental probes to vanish. Here we show this issue can be circumvented in a controlled manner when both time-reversal- and inversion- symmetry are broken. To this end, we investigate chirality-disbalance in the carbide family RMC$_2$ (R a rare-earth and M a transition metal), showing several members to be Weyl semimetals. Using the noncentrosymmetric ferromagnet NdRhC$_2$ as an illustrating example, we show that an odd number of Weyl nodes can be stabilized at its Fermi surface by properly tilting its magnetization. The tilt direction determines the sign of the resulting net chirality, opening up a simple route to control it.
Transport in magnetic Weyl semimetals (WSMs) generally involves three degrees of freedom -- charge, valley, and spin. In this work, we systematically investigate the magnetic noise induced by the fluctuations of the charge current, the valley (axial) current, and the magnetic order. We show that these three flavors of the magnetic noise have distinctively different spectral characters. Our work provides a theoretical guidance for the noninvasive study of valley transport in magnetic WSMs by magnetic noise spectroscopy, for example, using nitrogen-vacancy centers. Our approach could also be generalized to discuss WSMs with other types of broken symmetries and topological semimetals in general.
We evaluate the sound attenuation in a Weyl semimetal subject to a magnetic field or a pseudomagnetic field associated with a strain. Due to the interplay of intra- and inter-node scattering processes as well as screening, the fields generically redu ce the sound absorption. A nontrivial dependence on the relative direction of the magnetic field and the sound wave vector, i.e., the magnetic sound dichroism, can occur in materials with nonsymmetric Weyl nodes (e.g., different Fermi velocities and/or relaxation times). It is found that the sound dichroism in Weyl materials can also be activated by an external strain-induced pseudomagnetic field. In view of the dependence on the field direction, the dichroism may lead to a weak enhancement of the sound attenuation compared with its value at vanishing fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا