ﻻ يوجد ملخص باللغة العربية
Multi-Weyl semimetals are new types of Weyl semimetals which have anisotropic non-linear energy dispersion and a topological charge larger than one, thus exhibiting a unique quantum response. Using a unified lattice model, we calculate the optical conductivity numerically in the multi-Weyl semimetal phase and in its neighboring gapped states, and obtain the characteristic frequency dependence of each phase analytically using a low-energy continuum model. The frequency dependence of longitudinal and transverse optical conductivities obeys scaling relations that are derived from the winding number of the parent multi-Weyl semimetal phase and can be used to distinguish these electronic states of matter.
The interband optical response of a three-dimensional Dirac cone is linear in photon energy ($Omega$). Here, we study the evolution of the interband response within a model Hamiltonian which contains Dirac, Weyl and gapped semimetal phases. In the pu
We investigate collective modes in three dimensional (3D) gapless multi-Weyl semimetals with anisotropic energy band dispersions (i.e., $Esim sqrt{ k_{parallel}^{2J} + k_z^2}$, where $k_{parallel}$ and $k_z$ are wave vectors and $J$ is a positive int
We study dc conductivity of a Weyl semimetal with uniaxial anisotropy (Fermi velocity ratio $xi= v_bot/v_parallel eq1$) considering the scattering of charge carriers by a wide class of impurity potentials, both short- and long-range. We obtain the ra
The optical properties of (001)-oriented NbP single crystals have been studied in a wide spectral range from 6 meV to 3 eV from room temperature down to 10 K. The itinerant carriers lead to a Drude-like contribution to the optical response; we can fu
In a slab geometry with large surface-to-bulk ratio, topological surface states such as Fermi arcs for Weyl or Dirac semimetals may dominate their low-energy properties. We investigate the collective charge oscillations in such systems, finding strik