ﻻ يوجد ملخص باللغة العربية
The extreme events are investigated for an $n$-component nonlinear Schrodinger ($n$-NLS) system in the focusing Kerr-like nonlinear media, which appears in many physical fields. We report and discuss the novel multi-parametric families of vector rational rogue wave (RW) solutions featuring the parity-time (PT) symmetry, which are characterized by non-identical boundary conditions for the components, and consistent with the degeneracy of $n$ branches of Benjamin-Feir instability. Explicit examples of PT-symmetric vector RWs are presented. Some parameter constraints can make some components generate the RWs with high amplitudes due to many-body resonant interactions.Effect of a non-integrable deformation of the model on the excitation of vector RWs is also discussed. These results will be useful to design the RW experiments in multi-component physical systems.
The double-periodic solutions of the focusing nonlinear Schrodinger equation have been previously obtained by the method of separation of variables. We construct these solutions by using an algebraic method with two eigenvalues. Furthermore, we chara
In this work, we have studied the peregrine rogue wave dynamics, with a solitons on finite background (SFB) ansatz, in the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlinear Schrodinger system with parity-time symmetric Kerr
In this paper, a general bright-dark soliton solution in the form of Pfaffian is constructed for an integrable semi-discrete vector NLS equation via Hirotas bilinear method. One- and two-bright-dark soliton solutions are explicitly presented for two-
In this work, based on the recently proposed (Phys. Rev. Lett. 110 (2013) 064105) continuous nonlocal nonlinear Schrodinger system with parity-time symmetric Kerr nonlinearity (PTNLSE), a numerical investigation has been carried out for two first ord
We provide a construction of the two-component Camassa-Holm (CH-2) hierarchy employing a new zero-curvature formalism and identify and describe in detail the isospectral set associated to all real-valued, smooth, and bounded algebro-geometric solutio