ترغب بنشر مسار تعليمي؟ اضغط هنا

SID: Incremental Learning for Anchor-Free Object Detection via Selective and Inter-Related Distillation

109   0   0.0 ( 0 )
 نشر من قبل Can Peng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Incremental learning requires a model to continually learn new tasks from streaming data. However, traditional fine-tuning of a well-trained deep neural network on a new task will dramatically degrade performance on the old task -- a problem known as catastrophic forgetting. In this paper, we address this issue in the context of anchor-free object detection, which is a new trend in computer vision as it is simple, fast, and flexible. Simply adapting current incremental learning strategies fails on these anchor-free detectors due to lack of consideration of their specific model structures. To deal with the challenges of incremental learning on anchor-free object detectors, we propose a novel incremental learning paradigm called Selective and Inter-related Distillation (SID). In addition, a novel evaluation metric is proposed to better assess the performance of detectors under incremental learning conditions. By selective distilling at the proper locations and further transferring additional instance relation knowledge, our method demonstrates significant advantages on the benchmark datasets PASCAL VOC and COCO.

قيم البحث

اقرأ أيضاً

We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two li mitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work jointly with anchor-based branches by outputting predictions in parallel. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.
151 - Quanyu Liao , Xin Wang , Bin Kong 2021
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on obj ect detection networks. However, previous studies are dedicated to attacking anchor-based object detectors. In this paper, we present the first adversarial attack on anchor-free object detectors. It conducts category-wise, instead of previously instance-wise, attacks on object detectors, and leverages high-level semantic information to efficiently generate transferable adversarial examples, which can also be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN. Experimental results on two benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance and transferability.
Classification and localization are two pillars of visual object detectors. However, in CNN-based detectors, these two modules are usually optimized under a fixed set of candidate (or anchor) bounding boxes. This configuration significantly limits th e possibility to jointly optimize classification and localization. In this paper, we propose a Multiple Instance Learning (MIL) approach that selects anchors and jointly optimizes the two modules of a CNN-based object detector. Our approach, referred to as Multiple Anchor Learning (MAL), constructs anchor bags and selects the most representative anchors from each bag. Such an iterative selection process is potentially NP-hard to optimize. To address this issue, we solve MAL by repetitively depressing the confidence of selected anchors by perturbing their corresponding features. In an adversarial selection-depression manner, MAL not only pursues optimal solutions but also fully leverages multiple anchors/features to learn a detection model. Experiments show that MAL improves the baseline RetinaNet with significant margins on the commonly used MS-COCO object detection benchmark and achieves new state-of-the-art detection performance compared with recent methods.
Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with diff erent orientations to achieve spatial alignment with ground truth boxes, then Intersection-over-Union (IoU) is applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further lead to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carry out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.
The goal of object detection is to determine the class and location of objects in an image. This paper proposes a novel anchor-free, two-stage framework which first extracts a number of object proposals by finding potential corner keypoint combinatio ns and then assigns a class label to each proposal by a standalone classification stage. We demonstrate that these two stages are effective solutions for improving recall and precision, respectively, and they can be integrated into an end-to-end network. Our approach, dubbed Corner Proposal Network (CPN), enjoys the ability to detect objects of various scales and also avoids being confused by a large number of false-positive proposals. On the MS-COCO dataset, CPN achieves an AP of 49.2% which is competitive among state-of-the-art object detection methods. CPN also fits the scenario of computational efficiency, which achieves an AP of 41.6%/39.7% at 26.2/43.3 FPS, surpassing most competitors with the same inference speed. Code is available at https://github.com/Duankaiwen/CPNDet
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا