ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Anchor Learning for Arbitrary-Oriented Object Detection

250   0   0.0 ( 0 )
 نشر من قبل Qi Ming
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with different orientations to achieve spatial alignment with ground truth boxes, then Intersection-over-Union (IoU) is applied to sample the positive and negative candidates for training. However, we observe that the selected positive anchors cannot always ensure accurate detections after regression, while some negative samples can achieve accurate localization. It indicates that the quality assessment of anchors through IoU is not appropriate, and this further lead to inconsistency between classification confidence and localization accuracy. In this paper, we propose a dynamic anchor learning (DAL) method, which utilizes the newly defined matching degree to comprehensively evaluate the localization potential of the anchors and carry out a more efficient label assignment process. In this way, the detector can dynamically select high-quality anchors to achieve accurate object detection, and the divergence between classification and regression will be alleviated. With the newly introduced DAL, we achieve superior detection performance for arbitrary-oriented objects with only a few horizontal preset anchors. Experimental results on three remote sensing datasets HRSC2016, DOTA, UCAS-AOD as well as a scene text dataset ICDAR 2015 show that our method achieves substantial improvement compared with the baseline model. Besides, our approach is also universal for object detection using horizontal bound box. The code and models are available at https://github.com/ming71/DAL.

قيم البحث

اقرأ أيضاً

Classification and localization are two pillars of visual object detectors. However, in CNN-based detectors, these two modules are usually optimized under a fixed set of candidate (or anchor) bounding boxes. This configuration significantly limits th e possibility to jointly optimize classification and localization. In this paper, we propose a Multiple Instance Learning (MIL) approach that selects anchors and jointly optimizes the two modules of a CNN-based object detector. Our approach, referred to as Multiple Anchor Learning (MAL), constructs anchor bags and selects the most representative anchors from each bag. Such an iterative selection process is potentially NP-hard to optimize. To address this issue, we solve MAL by repetitively depressing the confidence of selected anchors by perturbing their corresponding features. In an adversarial selection-depression manner, MAL not only pursues optimal solutions but also fully leverages multiple anchors/features to learn a detection model. Experiments show that MAL improves the baseline RetinaNet with significant margins on the commonly used MS-COCO object detection benchmark and achieves new state-of-the-art detection performance compared with recent methods.
In this paper, we propose a general approach to optimize anchor boxes for object detection. Nowadays, anchor boxes are widely adopted in state-of-the-art detection frameworks. However, these frameworks usually pre-define anchor box shapes in heuristi c ways and fix the sizes during training. To improve the accuracy and reduce the effort of designing anchor boxes, we propose to dynamically learn the anchor shapes, which allows the anchors to automatically adapt to the data distribution and the network learning capability. The learning approach can be easily implemented with stochastic gradient descent and can be plugged into any anchor box-based detection framework. The extra training cost is almost negligible and it has no impact on the inference time or memory cost. Exhaustive experiments demonstrate that the proposed anchor optimization method consistently achieves significant improvement ($ge 1%$ mAP absolute gain) over the baseline methods on several benchmark datasets including Pascal VOC 07+12, MS COCO and Brainwash. Meanwhile, the robustness is also verified towards different anchor initialization methods and the number of anchor shapes, which greatly simplifies the problem of anchor box design.
151 - Quanyu Liao , Xin Wang , Bin Kong 2021
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on obj ect detection networks. However, previous studies are dedicated to attacking anchor-based object detectors. In this paper, we present the first adversarial attack on anchor-free object detectors. It conducts category-wise, instead of previously instance-wise, attacks on object detectors, and leverages high-level semantic information to efficiently generate transferable adversarial examples, which can also be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN. Experimental results on two benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance and transferability.
80 - Yishan He , Fei Gao , Jun Wang 2021
Common horizontal bounding box (HBB)-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (O BB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more diffcult and lead to performance degradation. In this paper, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an Intersect over Union (IOU) -weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Experiments on the Rotating SAR Ship Detection Dataset (RSSDD) show that the proposed method can achieve better detection performance over other comparison algorithms and other OBB encoding schemes, demonstrating the effectiveness of our method.
Expensive bounding-box annotations have limited the development of object detection task. Thus, it is necessary to focus on more challenging task of few-shot object detection. It requires the detector to recognize objects of novel classes with only a few training samples. Nowadays, many existing popular methods based on meta-learning have achieved promising performance, such as Meta R-CNN series. However, only a single category of support data is used as the attention to guide the detecting of query images each time. Their relevance to each other remains unexploited. Moreover, a lot of recent works treat the support data and query images as independent branch without considering the relationship between them. To address this issue, we propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN). By adjusting the prediction distribution of the base detector using the output of this GCN, the proposed model can guide the detector to improve the class representation implicitly. Comprehensive experiments have been conducted on Pascal VOC and MS-COCO dataset. The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features. Our code is available at https://github.com/liuweijie19980216/DRL-for-FSOD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا