ﻻ يوجد ملخص باللغة العربية
It is a common belief that training deep transformers from scratch requires large datasets. Consequently, for small datasets, people usually use shallow and simple additional layers on top of pre-trained models during fine-tuning. This work shows that this does not always need to be the case: with proper initialization and optimization, the benefits of very deep transformers can carry over to challenging tasks with small datasets, including Text-to-SQL semantic parsing and logical reading comprehension. In particular, we successfully train $48$ layers of transformers, comprising $24$ fine-tuned layers from pre-trained RoBERTa and $24$ relation-aware layers trained from scratch. With fewer training steps and no task-specific pre-training, we obtain the state-of-the-art performance on the challenging cross-domain Text-to-SQL parsing benchmark Spider. We achieve this by deriving a novel Data-dependent Transformer Fixed-update initialization scheme (DT-Fixup), inspired by the prior T-Fixup work. Further error analysis shows that increasing depth can help improve generalization on small datasets for hard cases that require reasoning and structural understanding.
Visual Transformers (VTs) are emerging as an architectural paradigm alternative to Convolutional networks (CNNs). Differently from CNNs, VTs can capture global relations between image elements and they potentially have a larger representation capacit
In this paper, we introduce the use of Semantic Hashing as embedding for the task of Intent Classification and achieve state-of-the-art performance on three frequently used benchmarks. Intent Classification on a small dataset is a challenging task fo
Transformers have been recently adapted for large scale image classification, achieving high scores shaking up the long supremacy of convolutional neural networks. However the optimization of image transformers has been little studied so far. In this
At the heart of text based neural models lay word representations, which are powerful but occupy a lot of memory making it challenging to deploy to devices with memory constraints such as mobile phones, watches and IoT. To surmount these challenges,
We develop a chatbot using Deep Bidirectional Transformer models (BERT) to handle client questions in financial investment customer service. The bot can recognize 381 intents, and decides when to say I dont know and escalates irrelevant/uncertain que