ﻻ يوجد ملخص باللغة العربية
Semiconductors require stable doping for applications in transistors, optoelectronics, and thermoelectrics. However, this has been challenging for two-dimensional (2D) materials, where existing approaches are either incompatible with conventional semiconductor processing or introduce time-dependent, hysteretic behavior. Here we show that low temperature (< 200$^circ$ C) sub-stoichiometric AlO$_x$ provides a stable n-doping layer for monolayer MoS$_2$, compatible with circuit integration. This approach achieves carrier densities > 2x10$^{13}$ 1/cm$^2$, sheet resistance as low as ~7 kOhm/sq, and good contact resistance ~480 Ohm.um in transistors from monolayer MoS$_2$ grown by chemical vapor deposition. We also reach record current density of nearly 700 uA/um (>110 MA/cm$^2$) in this three-atom-thick semiconductor while preserving transistor on/off current ratio > $10^6$. The maximum current is ultimately limited by self-heating and could exceed 1 mA/um with better device heat sinking. With their 0.1 nA/um off-current, such doped MoS$_2$ devices approach several low-power transistor metrics required by the international technology roadmap
The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p
Understanding the resistive switching behavior, or the resistance change, of oxide-based memristor devices, is critical to predicting their responses with known electrical inputs. Also, with the known electrical response of a memristor, one can confi
In-plane optical anisotropy has been detected from monolayer MoS$_2$ grown on a-plane (11-20) sapphire substrate in the ultraviolet-visible wavelength range. Based on the measured optical anisotropy, the energy differences between the optical transit
Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more eff
We fabricate large-area atomically thin MoS$_2$ layers through the direct transformation of crystalline molybdenum MoS$_2$ (MoO$_3$) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-cryst