ﻻ يوجد ملخص باللغة العربية
We study the properties of singly-quantized linear vortices in the supersolid phase of a dipolar Bose-Einstein condensate at zero temperature modeling $^{164}$Dy atoms. The system is extended in the $x-y$ plane and confined by a harmonic trap in the the polarization direction $z$. Our study is based on a generalized Gross-Pitaevskii equation. We characterize the ground state of the system in terms of spatial order and superfluid fraction and compare the properties of a single vortex and of a vortex dipole in the superfluid phase (SFP) and in the supersolid phase (SSP). At variance with a vortex in the SFP, which is free to move in the superfluid, a vortex in the SSP is localized at the interstitial sites and does not move freely. We have computed the energy barrier for motion from an equilibrium site to another. The fact that the vortex is submitted to a periodic potential has a dramatic effect on the dynamics of a vortex dipole made of two counter rotating parallel vortices; instead of rigidly translating as in the SFP, the vortex and anti-vortex approach each other by a series of jumps from one site to another until they annihilate in a very short time and their energy is transferred to bulk excitations.
Vortices are expected to exist in a supersolid but experimentally their detection can be difficult because the vortex cores are localized at positions where the local density is very low. We address here this problem by performing numerical simulatio
Supersolidity - a coexistence of superfluidity and crystalline or amorphous density variations - has been vividly debated ever since its conjecture. While the initial focus was on helium-4, recent experiments uncovered supersolidity in ultra-cold dip
The behaviour of a harmonically trapped dipolar Bose-Einstein condensate with its dipole moments rotating at angular frequencies lower than the transverse harmonic trapping frequency is explored in the co-rotating frame. We obtain semi-analytical sol
We investigate the properties of quantized vortices in a dipolar Bose-Einstein condensed gas by means of a generalised Gross-Pitaevskii equation. The size of the vortex core hugely increases by increasing the weight of the dipolar interaction and app
Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profil