ﻻ يوجد ملخص باللغة العربية
The behaviour of a harmonically trapped dipolar Bose-Einstein condensate with its dipole moments rotating at angular frequencies lower than the transverse harmonic trapping frequency is explored in the co-rotating frame. We obtain semi-analytical solutions for the stationary states in the Thomas-Fermi limit of the corresponding dipolar Gross-Pitaevskii equation and utilise linear stability analysis to elucidate a phase diagram for the dynamical stability of these stationary solutions with respect to collective modes. These results are verified via direct numerical simulations of the dipolar Gross-Pitaevskii equation, which demonstrate that dynamical instabilities of the co-rotating stationary solutions lead to the seeding of vortices that eventually relax into a triangular lattice configuration. Our results illustrate that rotation of the dipole polarization represents a new route to vortex formation in dipolar Bose-Einstein condensates.
We have computed phase diagrams for rotating spin-1 Bose-Einstein condensates with long-range magnetic dipole-dipole interactions. Spin textures including vortex sheets, staggered half-quantum- and skyrmion vortex lattices and higher order topologica
We explore spatial symmetry breaking of a dipolar Bose Einstein condensate in the thermodynamic limit and reveal a critical point in the phase diagram at which crystallization occurs via a second order phase transition. This behavior is traced back t
We study the properties of singly-quantized linear vortices in the supersolid phase of a dipolar Bose-Einstein condensate at zero temperature modeling $^{164}$Dy atoms. The system is extended in the $x-y$ plane and confined by a harmonic trap in the
Vortex lattices in rapidly rotating Bose--Einstein condensates are systems of topological excitations that arrange themselves into periodic patterns. Here we show how phase-imprinting techniques can be used to create a controllable number of defects
Based on the two-dimensional mean-field equations for pancake-shaped dipolar Bose-Einstein condensates in a rotating frame with both attractive and repulsive dipole-dipole interaction (DDI) as well as arbitrary polarization angle, we study the profil