ﻻ يوجد ملخص باللغة العربية
This work analyzes the difficulties in learning and teaching Einsteins theory of special relativity. An extensive bibliographic review has been performed, considering articles published in the most relevant journals on science education, which were selected taking into account the following impact factors: JCR, SJR, IN-RECS and ICDS. The typical thinking of students and teachers is discussed pointing out that, occasionally, it does not befit the proper scientific perspective. Different educational proposals are examined and particular didactic implications are inferred. The conclusions of this inquiry constitute the basis of a proposal that relies on a Minkowskian geometrical formulation for teaching special relativity in upper secondary education.
Many professional physicists do not fully understand the implications of the Einstein equivalence principle of general relativity. Consequently, many are unaware of the fact that special relativity is fully capable of handling accelerated reference f
This white paper aims to identify an open problem in Quantum Physics and the Nature of Reality --namely whether quantum theory and special relativity are formally compatible--, to indicate what the underlying issues are, and put forward ideas about how the problem might be addressed.
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as
Late time properties of moving relativistic particles are studied. Within the proper relativistic treatment of the problem we find decay curves of such particles and we show that late time deviations of the survival probability of these particles fro
An experiment aimed at testing special relativity via a comparison of the velocity of a non matter particle (annihilation photon) with the velocity of the matter particle (Compton electron) produced by the second annihilation photon from the decay Na-22(beta^+)Ne-22 is proposed.