ترغب بنشر مسار تعليمي؟ اضغط هنا

Cooperation in a fluid swarm of fuel-free micro-swimmers

169   0   0.0 ( 0 )
 نشر من قبل Matan Yah Ben Zion
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooperation is vital for the survival of a swarm$^1$. Large scale cooperation allows murmuring starlings to outmaneuver preying falcons$^2$, shoaling sardines to outsmart sea lions$^3$, and homo sapiens to outlive their Pleistocene peers$^4$. On the micron-scale, bacterial colonies show excellent resilience thanks to the individuals ability to cooperate even when densely packed, mitigating their internal flow pattern to mix nutrients, fence the immune system, and resist antibiotics$^{5-14}$. Production of an artificial swarm on the micro-scale faces a serious challenge $frac{;;}{;;}$ while an individual bacterium has an evolutionary-forged internal machinery to produce propulsion, until now, artificial micro-swimmers relied on the precise chemical composition of their environment to directly fuel their drive$^{14-23}$. When crowded, artificial micro-swimmers compete locally for a finite fuel supply, quenching each others activity at their greatest propensity for cooperation. Here we introduce an artificial micro-swimmer that consumes no chemical fuel and is driven solely by light. We couple a light absorbing particle to a fluid droplet, forming a colloidal chimera that transforms light energy into propulsive thermo-capillary action. The swimmers internal drive allows them to operate and remain active for a long duration (days) and their effective repulsive interaction allows for a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange and spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.

قيم البحث

اقرأ أيضاً

We use numerical simulations to compute the equation of state of a suspension of spherical, self-propelled nanoparticles. We study in detail the effect of excluded volume interactions and confinement as a function of the system temperature, concentra tion and strength of the propulsion. We find a striking non-monotonic dependence of the pressure with the temperature, and provide simple scaling arguments to predict and explain the occurrence of such an anomalous behavior. We conclude the paper by explicitly showing how our results have an important implications for the effective forces exerted by fluids of self-propelled particles on passive, larger components.
Surface interactions provide a class of mechanisms which can be employed for propulsion of micro- and nanometer sized particles. We investigate the related efficiency of externally and self-propelled swimmers. A general scaling relation is derived sh owing that only swimmers whose size is comparable to, or smaller than, the interaction range can have appreciable efficiency. An upper bound for efficiency at maximum power is 1/2. Numerical calculations for the case of diffusiophoresis are found to be in good agreement with analytical expressions for the efficiency.
We report on the capillary-driven levelling of a topographical perturbation at the surface of a free-standing liquid nanofilm. The width of a stepped surface profile is found to evolve as the square root of time. The hydrodynamic model is in excellen t agreement with the experimental data. In addition to exhibiting an analogy with diffusive processes, this novel system serves as a precise nanoprobe for the rheology of liquids at interfaces in a configuration that avoids substrate effects.
In this study, micro-droplets are placed on thin, glassy, free-standing films where the Laplace pressure of the droplet deforms the free-standing film, creating a bulge. The films tension is modulated by changing temperature continuously from well be low the glass transition into the melt state of the film. The contact angle of the liquid droplet with the planar film as well as the angle of the bulge with the film are measured and found to be consistent with the contact angles predicted by a force balance at the contact line.
Small objects can swim by generating around them fields or gradients which in turn induce fluid motion past their surface by phoretic surface effects. We quantify for arbitrary swimmer shapes and surface patterns, how efficient swimming requires both surface ``activity to generate the fields, and surface ``phoretic mobility. We show in particular that (i) swimming requires symmetry breaking in either or both of the patterns of activity and ``mobility, and (ii) for a given geometrical shape and surface pattern, the swimming velocity is size-independent. In addition, for given available surface properties, our calculation framework provides a guide for optimizing the design of swimmers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا