ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Thermomechanical Properties of a Self-propelled Colloidal Fluid

123   0   0.0 ( 0 )
 نشر من قبل Stewart Mallory
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use numerical simulations to compute the equation of state of a suspension of spherical, self-propelled nanoparticles. We study in detail the effect of excluded volume interactions and confinement as a function of the system temperature, concentration and strength of the propulsion. We find a striking non-monotonic dependence of the pressure with the temperature, and provide simple scaling arguments to predict and explain the occurrence of such an anomalous behavior. We conclude the paper by explicitly showing how our results have an important implications for the effective forces exerted by fluids of self-propelled particles on passive, larger components.

قيم البحث

اقرأ أيضاً

A number of novel experimental and theoretical results have recently been obtained on active soft matter, demonstrating the various interesting universal and anomalous features of this kind of driven systems. Here we consider a fundamental but still unexplored aspect of the patterns arising in the system of actively moving units, i.e., their segregation taking place when two kinds of them with different adhesive properties are present. The process of segregation is studied by a model made of self-propelled particles such that the particles have a tendency to adhere only to those which are of the same kind. The calculations corresponding to the related differential equations can be made in parallel, thus a powerful GPU card allows large scale simulations. We find that the segregation kinetics is very different from the non-driven counterparts and is described by the new scaling exponents $zsimeq 1$ and $zsimeq 0.8$ for the 1:1 and the non-equal ratio of the two constituents, respectively. Our results are in agreement with a recent observation of segregating tissue cells emph{in vitro}.
Cooperation is vital for the survival of a swarm$^1$. Large scale cooperation allows murmuring starlings to outmaneuver preying falcons$^2$, shoaling sardines to outsmart sea lions$^3$, and homo sapiens to outlive their Pleistocene peers$^4$. On the micron-scale, bacterial colonies show excellent resilience thanks to the individuals ability to cooperate even when densely packed, mitigating their internal flow pattern to mix nutrients, fence the immune system, and resist antibiotics$^{5-14}$. Production of an artificial swarm on the micro-scale faces a serious challenge $frac{;;}{;;}$ while an individual bacterium has an evolutionary-forged internal machinery to produce propulsion, until now, artificial micro-swimmers relied on the precise chemical composition of their environment to directly fuel their drive$^{14-23}$. When crowded, artificial micro-swimmers compete locally for a finite fuel supply, quenching each others activity at their greatest propensity for cooperation. Here we introduce an artificial micro-swimmer that consumes no chemical fuel and is driven solely by light. We couple a light absorbing particle to a fluid droplet, forming a colloidal chimera that transforms light energy into propulsive thermo-capillary action. The swimmers internal drive allows them to operate and remain active for a long duration (days) and their effective repulsive interaction allows for a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange and spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.
Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time tan{delta} is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.
Colloidal particles hold promise for mobilizing and removing trapped immiscible fluids from porous media, with implications for key energy and water applications. Most studies focus on accomplishing this goal using particles that can localize at the immiscible fluid interface. Therefore, researchers typically seek to optimize the surface activity of particles, as well as their ability to freely move through a pore space with minimal deposition onto the surrounding solid matrix. Here, we demonstrate that deposition can, surprisingly, promote mobilization of a trapped fluid from a porous medium without requiring any surface activity. Using confocal microscopy, we directly visualize both colloidal particles and trapped immiscible fluid within a transparent, three-dimensional (3D) porous medium. We find that as non-surface active particles deposit on the solid matrix, increasing amounts of trapped fluid become mobilized. We unravel the underlying physics by analyzing the extent of deposition, as well as the geometry of trapped fluid droplets, at the pore scale: deposition increases the viscous stresses on trapped droplets, overcoming the influence of capillarity that keeps them trapped. Given an initial distribution of trapped fluid, this analysis enables us to predict the extent of fluid mobilized through colloidal deposition. Taken together, our work reveals a new way by which colloids can be harnessed to mobilize trapped fluid from a porous medium.
Aqueous dispersion of Laponite, when exposed to carbon dioxide environment leads to in situ inducement of magnesium and lithium ions, which is, however absent when dispersion is exposed to air. Consequently, in the rheological experiments, Laponite d ispersion preserved under carbon dioxide shows more spectacular enhancement in the elastic and viscous moduli as a function of time compared to that exposed to air. By measuring concentration of all the ions present in a dispersion as well as change in pH, the evolving inter-particle interactions among the Laponite particles is estimated. DLVO analysis of a limiting case is performed, wherein two particles approach each other in a parallel fashion a situation with maximum repulsive interactions. Interestingly it is observed that DLVO analysis explains the qualitative details of an evolution of elastic and viscous moduli remarkably well thereby successfully relating the macroscopic phenomena to the microscopic interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا