ترغب بنشر مسار تعليمي؟ اضغط هنا

The Price is (Probably) Right: Learning Market Equilibria from Samples

67   0   0.0 ( 0 )
 نشر من قبل Vignesh Viswanathan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Equilibrium computation in markets usually considers settings where player valuation functions are known. We consider the setting where player valuations are unknown; using a PAC learning-theoretic framework, we analyze some classes of common valuation functions, and provide algorithms which output direct PAC equilibrium allocations, not estimates based on attempting to learn valuation functions. Since there exist trivial PAC market outcomes with an unbounded worst-case efficiency loss, we lower-bound the efficiency of our algorithms. While the efficiency loss under general distributions is rather high, we show that in some cases (e.g., unit-demand valuations), it is possible to find a PAC market equilibrium with significantly better utility.



قيم البحث

اقرأ أيضاً

The problem of allocating scarce items to individuals is an important practical question in market design. An increasingly popular set of mechanisms for this task uses the concept of market equilibrium: individuals report their preferences, have a bu dget of real or fake currency, and a set of prices for items and allocations is computed that sets demand equal to supply. An important real world issue with such mechanisms is that individual valuations are often only imperfectly known. In this paper, we show how concepts from classical market equilibrium can be extended to reflect such uncertainty. We show that in linear, divisible Fisher markets a robust market equilibrium (RME) always exists; this also holds in settings where buyers may retain unspent money. We provide theoretical analysis of the allocative properties of RME in terms of envy and regret. Though RME are hard to compute for general uncertainty sets, we consider some natural and tractable uncertainty sets which lead to well behaved formulations of the problem that can be solved via modern convex programming methods. Finally, we show that very mild uncertainty about valuations can cause RME allocations to outperform those which take estimates as having no underlying uncertainty.
Suppose that an $m$-simplex is partitioned into $n$ convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that oc curs within some distance $epsilon$ from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant $m$ uses $poly(n, log left( frac{1}{epsilon} right))$ queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant $n$ uses $poly(m, log left( frac{1}{epsilon} right))$ queries. We show via Kakutanis fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies. We also partially extend our results to games with multiple players, establishing further query complexity bounds for computing approximate well-supported equilibria in this setting.
Understanding the behavior of no-regret dynamics in general $N$-player games is a fundamental question in online learning and game theory. A folk result in the field states that, in finite games, the empirical frequency of play under no-regret learni ng converges to the games set of coarse correlated equilibria. By contrast, our understanding of how the day-to-day behavior of the dynamics correlates to the games Nash equilibria is much more limited, and only partial results are known for certain classes of games (such as zero-sum or congestion games). In this paper, we study the dynamics of follow-the-regularized-leader (FTRL), arguably the most well-studied class of no-regret dynamics, and we establish a sweeping negative result showing that the notion of mixed Nash equilibrium is antithetical to no-regret learning. Specifically, we show that any Nash equilibrium which is not strict (in that every player has a unique best response) cannot be stable and attracting under the dynamics of FTRL. This result has significant implications for predicting the outcome of a learning process as it shows unequivocally that only strict (and hence, pure) Nash equilibria can emerge as stable limit points thereof.
In this paper, we examine the Nash equilibrium convergence properties of no-regret learning in general N-player games. For concreteness, we focus on the archetypal follow the regularized leader (FTRL) family of algorithms, and we consider the full sp ectrum of uncertainty that the players may encounter - from noisy, oracle-based feedback, to bandit, payoff-based information. In this general context, we establish a comprehensive equivalence between the stability of a Nash equilibrium and its support: a Nash equilibrium is stable and attracting with arbitrarily high probability if and only if it is strict (i.e., each equilibrium strategy has a unique best response). This equivalence extends existing continuous-ti
Our paper concerns the computation of Nash equilibria of first-price auctions with correlated values. While there exist several equilibrium computation methods for auctions with independent values, the correlation of the bidders values introduces sig nificant complications that render existing methods unsatisfactory in practice. Our contribution is a step towards filling this gap: inspired by the seminal fictitious play process of Brown and Robinson, we present a learning heuristic-that we call fictitious bidding (FB)-for estimating Bayes-Nash equilibria of first-price auctions with correlated values, and we assess the performance of this heuristic on several relevant examples.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا