ﻻ يوجد ملخص باللغة العربية
Goal-oriented conversational agents are becoming prevalent in our daily lives. For these systems to engage users and achieve their goals, they need to exhibit appropriate social behavior as well as provide informative replies that guide users through tasks. The first component of the research in this paper applies statistical modeling techniques to understand conversations between users and human agents for customer service. Analyses show that social language used by human agents is associated with greater users responsiveness and task completion. The second component of the research is the construction of a conversational agent model capable of injecting social language into an agents responses while still preserving content. The model uses a sequence-to-sequence deep learning architecture, extended with a social language understanding element. Evaluation in terms of content preservation and social language level using both human judgment and automatic linguistic measures shows that the model can generate responses that enable agents to address users issues in a more socially appropriate way.
Most prior work on task-oriented dialogue systems are restricted to limited coverage of domain APIs. However, users oftentimes have requests that are out of the scope of these APIs. This work focuses on responding to these beyond-API-coverage user tu
Being engaging, knowledgeable, and empathetic are all desirable general qualities in a conversational agent. Previous work has introduced tasks and datasets that aim to help agents to learn those qualities in isolation and gauge how well they can exp
Transformer is a powerful model for text understanding. However, it is inefficient due to its quadratic complexity to input sequence length. Although there are many methods on Transformer acceleration, they are still either inefficient on long sequen
Many task-oriented dialogue systems use deep reinforcement learning (DRL) to learn policies that respond to the user appropriately and complete the tasks successfully. Training DRL agents with diverse dialogue trajectories prepare them well for rare
Building an end-to-end conversational agent for multi-domain task-oriented dialogues has been an open challenge for two main reasons. First, tracking dialogue states of multiple domains is non-trivial as the dialogue agent must obtain complete states