ترغب بنشر مسار تعليمي؟ اضغط هنا

Attractor invariants, brane tilings and crystals

143   0   0.0 ( 0 )
 نشر من قبل Boris Pioline
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Supersymmetric D-brane bound states on a Calabi-Yau threefold $X$ are counted by generalized Donaldsdon-Thomas invariants $Omega_Z(gamma)$, depending on a Chern character (or electromagnetic charge) $gammain H^*(X)$ and a stability condition (or central charge) $Z$. Attractor invariants $Omega_*(gamma)$ are special instances of DT invariants, where $Z$ is the attractor stability condition $Z_gamma$ (a generic perturbation of self-stability), from which DT invariants for any other stability condition can be deduced. While difficult to compute in general, these invariants become tractable when $X$ is a crepant resolution of a singular toric Calabi-Yau threefold associated to a brane tiling, and hence to a quiver with potential. We survey some known results and conjectures about framed and unframed refined DT invariants in this context, and compute attractor invariants explicitly for a variety of toric Calabi-Yau threefolds, in particular when $X$ is the total space of the canonical bundle of a smooth projective surface, or when $X$ is a crepant resolution of $C^3/G$. We check that in all these cases, $Omega_*(gamma)=0$ unless $gamma$ is the dimension vector of a simple representation or belongs to the kernel of the skew-symmetrized Euler form. Based on computations in small dimensions, we predict the values of all attractor invariants, thus potentially solving the problem of counting DT invariants of these threefolds in all stability chambers. We also compute the non-commutative refined DT invariants and verify that they agree with the counting of molten crystals in the unrefined limit.



قيم البحث

اقرأ أيضاً

Inspired by the split attractor flow conjecture for multi-centered black hole solutions in N=2 supergravity, we propose a formula expressing the BPS index $Omega(gamma,z)$ in terms of `attractor indices $Omega_*(gamma_i)$. The latter count BPS states in their respective attractor chamber. This formula expresses the index as a sum over stable flow trees weighted by products of attractor indices. We show how to compute the contribution of each tree directly in terms of asymptotic data, without having to integrate the attractor flow explicitly. Furthermore, we derive new representations for the index which make it manifest that discontinuities associated to distinct trees cancel in the sum, leaving only the discontinuities consistent with wall-crossing. We apply these results in the context of quiver quantum mechanics, providing a new way of computing the Betti numbers of quiver moduli spaces, and compare them with the Coulomb branch formula, clarifying the relation between attractor and single-centered indices.
We show that Calabi-Yau crystals generate certain Chern-Simons knot invariants, with Lagrangian brane insertions generating the unknot and Hopf link invariants. Further, we make the connection of the crystal brane amplitudes to the topological vertex formulation explicit and show that the crystal naturally resums the corresponding topological vertex amplitudes. We also discuss the conifold and double wall crystal model in this context. The results suggest that the free energy associated to the crystal brane amplitudes can be simply expressed as a target space Gopakumar-Vafa expansion.
A string theoretic derivation is given for the conjecture of Hausel, Letellier, and Rodriguez-Villegas on the cohomology of character varieties with marked points. Their formula is identified with a refined BPS expansion in the stable pair theory of a local root stack, generalizing previous work of the first two authors in collaboration with G. Pan. Haimans geometric construction for Macdonald polynomials is shown to emerge naturally in this context via geometric engineering. In particular this yields a new conjectural relation between Macdonald polynomials and refined local orbifold curve counting invariants. The string theoretic approach also leads to a new spectral cover construction for parabolic Higgs bundles in terms of holomorphic symplectic orbifolds.
92 - Wei Gu , Jirui Guo , Yaoxiong Wen 2020
We propose Picard-Fuchs equations for periods of nonabelian mirrors in this paper. The number of parameters in our Picard-Fuchs equations is the rank of the gauge group of the nonabelian GLSM, which is eventually reduced to the actual number of K{a}h ler parameters. These Picard-Fuchs equations are concise and novel. We justify our proposal by reproducing existing mathematical results, namely Picard-Fuchs equations of Grassmannians and Calabi-Yau manifolds as complete intersections in Grassmannians. Furthermore, our approach can be applied to other nonabelian GLSMs, so we compute Picard-Fuchs equations of some other Fano-spaces, which were not calculated in the literature before. Finally, the cohomology-valued generating functions of mirrors can be read off from our Picard-Fuchs equations. Using these generating functions, we compute Gromov-Witten invariants of various Calabi-Yau manifolds, including complete intersection Calabi-Yau manifolds in Grassmannians and non-complete intersection Calabi-Yau examples such as Pfaffian Calabi-Yau threefold and Gulliksen-Neg{aa}rd Calabi-Yau threefold, and find agreement with existing results in the literature. The generating functions we propose for non-complete intersection Calabi-Yau manifolds are genuinely new.
135 - Sanjaye Ramgoolam 2016
Group algebras of permutations have proved highly useful in solving a number of problems in large N gauge theories. I review the use of permutations in classifying gauge invariants in one-matrix and multi-matrix models and computing their correlators . These methods are also applicable to tensor models and have revealed a link between tensor models and the counting of branched covers. The key idea is to parametrize $U(N)$ gauge invariants using permutations, subject to equivalences. Correlators are related to group theoretic properties of these equivalence classes. Fourier transformation on symmetric groups by means of representation theory offers nice bases of functions on these equivalence classes. This has applications in AdS/CFT in identifying CFT duals of giant gravitons and their perturbations. It has also lead to general results on quiver gauge theory correlators, uncovering links to two dimensional topological field theory and the combinatorics of trace monoids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا