ﻻ يوجد ملخص باللغة العربية
We show that Calabi-Yau crystals generate certain Chern-Simons knot invariants, with Lagrangian brane insertions generating the unknot and Hopf link invariants. Further, we make the connection of the crystal brane amplitudes to the topological vertex formulation explicit and show that the crystal naturally resums the corresponding topological vertex amplitudes. We also discuss the conifold and double wall crystal model in this context. The results suggest that the free energy associated to the crystal brane amplitudes can be simply expressed as a target space Gopakumar-Vafa expansion.
This thesis is concerned with a realisation of topological theories in terms of statistical models known as Calabi-Yau crystals. The thesis starts with an introduction and review of topological field and string theories. Subsequently several new resu
We show how the smooth geometry of Calabi-Yau manifolds emerges from the thermodynamic limit of the statistical mechanical model of crystal melting defined in our previous paper arXiv:0811.2801. In particular, the thermodynamic partition function of
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.
We study when Calabi-Yau supermanifolds M(1|2) with one complex bosonic coordinate and two complex fermionic coordinates are super Ricci-flat, and find that if the bosonic manifold is compact, it must have constant scalar curvature.
We give a short overview over recent work on finding constraints on partition functions of 2d CFTs from modular invariance. We summarize the constraints on the spectrum and their connection to Calabi-Yau compactifications.