ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting and quantifying entanglement on near-term quantum devices

117   0   0.0 ( 0 )
 نشر من قبل Xin Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current Noisy Intermediate-Scale Quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability decomposition to propose two variational quantum algorithms, called Variational Entanglement Detection (VED) and Variational Logarithmic Negativity Estimation (VLNE), for detecting and quantifying entanglement on near-term quantum devices, respectively. VED makes use of the positive map criterion and works as follows. Firstly, it decomposes a positive map into a combination of quantum operations implementable on near-term quantum devices. It then variationally estimates the minimal eigenvalue of the final state, obtained by executing these implementable operations on the target state and averaging the output states. Deterministic and probabilistic methods are proposed to compute the average. At last, it asserts that the target state is entangled if the optimized minimal eigenvalue is negative. VLNE builds upon a linear decomposition of the transpose map into Pauli terms and the recently proposed trace distance estimation algorithm. It variationally estimates the well-known logarithmic negativity entanglement measure and could be applied to quantify entanglement on near-term quantum devices. Experimental and numerical results on the Bell state, isotropic states, and Breuer states show the validity of the proposed entanglement detection and quantification methods.



قيم البحث

اقرأ أيضاً

Efficient sampling from a classical Gibbs distribution is an important computational problem with applications ranging from statistical physics over Monte Carlo and optimization algorithms to machine learning. We introduce a family of quantum algorit hms that provide unbiased samples by preparing a state encoding the entire Gibbs distribution. We show that this approach leads to a speedup over a classical Markov chain algorithm for several examples including the Ising model and sampling from weighted independent sets of two different graphs. Our approach connects computational complexity with phase transitions, providing a physical interpretation of quantum speedup. Moreover, it opens the door to exploring potentially useful sampling algorithms on near-term quantum devices as the algorithm for sampling from independent sets on certain graphs can be naturally implemented using Rydberg atom arrays.
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term q uantum devices will provide several hundred qubits and limited error correction. Still, there is a realistic prospect to run useful algorithms within the limited circuit depth of such devices. Particularly promising are optimization algorithms that follow a hybrid approach: the aim is to steer a highly entangled state on a quantum system to a target state that minimizes a cost function via variation of some gate parameters. This variational approach can be used both for classical optimization problems as well as for problems in quantum chemistry. The challenge is to converge to the target state given the limited coherence time and connectivity of the qubits. In this context, the quantum volume as a metric to compare the power of near-term quantum devices is discussed. With focus on chemistry applications, a general description of variational algorithms is provided and the mapping from fermions to qubits is explained. Coupled-cluster and heuristic trial wave-functions are considered for efficiently finding molecular ground states. Furthermore, simple error-mitigation schemes are introduced that could improve the accuracy of determining ground-state energies. Advancing these techniques may lead to near-term demonstrations of useful quantum computation with systems containing several hundred qubits.
181 - James R. Wootton 2020
Now that ever more sophisticated devices for quantum computing are being developed, we require ever more sophisticated benchmarks. This includes a need to determine how well these devices support the techniques required for quantum error correction. In this paper we introduce the texttt{topological_codes} module of Qiskit-Ignis, which is designed to provide the tools necessary to perform such tests. Specifically, we use the texttt{RepetitionCode} and texttt{GraphDecoder} classes to run tests based on the repetition code and process the results. As an example, data from a 43 qubit code running on IBMs emph{Rochester} device is presented.
We describe a resource-efficient approach to studying many-body quantum states on noisy, intermediate-scale quantum devices. We employ a sequential generation model that allows us to bound the range of correlations in the resulting many-body quantum states. From this, we characterize situations where the estimation of local observables does not require the preparation of the entire state. Instead smaller patches of the state can be generated from which the observables can be estimated. This can potentially reduce circuit size and number of qubits for the computation of physical properties of the states. Moreover, we show that the effect of noise decreases along the computation. Our results apply to a broad class of widely studied tensor network states and can be directly applied to near-term implementations of variational quantum algorithms.
106 - John Preskill 2012
Quantum information science explores the frontier of highly complex quantum states, the entanglement frontier. This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum s ystems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such quantum supremacy would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using standard quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state systems, or by combining both methods. Only by challenging the entanglement frontier will we learn whether Nature provides extravagant resources far beyond what the classical world would allow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا