ﻻ يوجد ملخص باللغة العربية
Now that ever more sophisticated devices for quantum computing are being developed, we require ever more sophisticated benchmarks. This includes a need to determine how well these devices support the techniques required for quantum error correction. In this paper we introduce the texttt{topological_codes} module of Qiskit-Ignis, which is designed to provide the tools necessary to perform such tests. Specifically, we use the texttt{RepetitionCode} and texttt{GraphDecoder} classes to run tests based on the repetition code and process the results. As an example, data from a 43 qubit code running on IBMs emph{Rochester} device is presented.
Efficient sampling from a classical Gibbs distribution is an important computational problem with applications ranging from statistical physics over Monte Carlo and optimization algorithms to machine learning. We introduce a family of quantum algorit
We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity ma
Universal fault-tolerant quantum computers will require error-free execution of long sequences of quantum gate operations, which is expected to involve millions of physical qubits. Before the full power of such machines will be available, near-term q
Quantum entanglement is a key resource in quantum technology, and its quantification is a vital task in the current Noisy Intermediate-Scale Quantum (NISQ) era. This paper combines hybrid quantum-classical computation and quasi-probability decomposit
Readout errors are a significant source of noise for near term quantum computers. A variety of methods have been proposed to mitigate these errors using classical post processing. For a system with $n$ qubits, the entire readout error profile is spec