ﻻ يوجد ملخص باللغة العربية
Given a gauged linear sigma model (GLSM) $mathcal{T}_{X}$ realizing a projective variety $X$ in one of its phases, i.e. its quantum Kahler moduli has a maximally unipotent point, we propose an emph{extended} GLSM $mathcal{T}_{mathcal{X}}$ realizing the homological projective dual category $mathcal{C}$ to $D^{b}Coh(X)$ as the category of B-branes of the Higgs branch of one of its phases. In most of the cases, the models $mathcal{T}_{X}$ and $mathcal{T}_{mathcal{X}}$ are anomalous and the analysis of their Coulomb and mixed Coulomb-Higgs branches gives information on the semiorthogonal/Lefschetz decompositions of $mathcal{C}$ and $D^{b}Coh(X)$. We also study the models $mathcal{T}_{X_{L}}$ and $mathcal{T}_{mathcal{X}_{L}}$ that correspond to homological projective duality of linear sections $X_{L}$ of $X$. This explains why, in many cases, two phases of a GLSM are related by homological projective duality. We study mostly abelian examples: linear and Veronese embeddings of $mathbb{P}^{n}$ and Fano complete intersections in $mathbb{P}^{n}$. In such cases, we are able to reproduce known results as well as produce some new conjectures. In addition, we comment on the construction of the HPD to a nonabelian GLSM for the Plucker embedding of the Grassmannian $G(k,N)$.
Homological Projective duality (HP-duality) theory, introduced by Kuznetsov [42], is one of the most powerful frameworks in the homological study of algebraic geometry. The main result (HP-duality theorem) of the theory gives complete descriptions of
We derive a formula for D3-brane charge on a compact spacetime, which includes torsion corrections to the tadpole cancellation condition. We use this to classify D-branes and RR fluxes in type II string theory on RP^3xRP^{2k+1}xS^{6-2k} with torsion
In this paper, we first introduce geometric operations for linear categories, and as a consequence generalize Orlovs blow up formula [O04] to possibly singular local complete intersection centres. Second, we introduce refined blowing up of linear cat
We describe supersymmetric A-branes and B-branes in open N=(2,2) dynamically gauged nonlinear sigma models (GNLSM), placing emphasis on toric manifold target spaces. For a subset of toric manifolds, these equivariant branes have a mirror description
We study the quantum sheaf cohomology of flag manifolds with deformations of the tangent bundle and use the ring structure to derive how the deformation transforms under the biholomorphic duality of flag manifolds. Realized as the OPE ring of A/2-twi