ﻻ يوجد ملخص باللغة العربية
We study the quantum sheaf cohomology of flag manifolds with deformations of the tangent bundle and use the ring structure to derive how the deformation transforms under the biholomorphic duality of flag manifolds. Realized as the OPE ring of A/2-twisted two-dimensional theories with (0,2) supersymmetry, quantum sheaf cohomology generalizes the notion of quantum cohomology. Complete descriptions of quantum sheaf cohomology have been obtained for abelian gauged linear sigma models (GLSMs) and for nonabelian GLSMs describing Grassmannians. In this paper we continue to explore the quantum sheaf cohomology of nonabelian theories. We first propose a method to compute the generating relations for (0,2) GLSMs with (2,2) locus. We apply this method to derive the quantum sheaf cohomology of products of Grassmannians and flag manifolds. The dual deformation associated with the biholomorphic duality gives rise to an explicit IR duality of two A/2-twisted (0,2) gauge theories.
We compute the quantum cohomology of symplectic flag manifolds. Symplectic flag manifolds can be described by non-abelian GLSMs with superpotential. Although the ring relations cannot be directly read off from the equations of motion on the Coulomb b
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Q
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant $K$-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti
We discuss the complex geometry of two complex five-dimensional Kahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all Kahlerian complex structures was prov
For a class of monadic deformations of the tangent bundles over nef-Fano smooth projective toric varieties, we study the correlators using quantum sheaf cohomology. We prove a summation formula for the correlators, confirming a conjecture by McOrist