ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Sheaf Cohomology and Duality of Flag Manifolds

265   0   0.0 ( 0 )
 نشر من قبل Jirui Guo
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Jirui Guo




اسأل ChatGPT حول البحث

We study the quantum sheaf cohomology of flag manifolds with deformations of the tangent bundle and use the ring structure to derive how the deformation transforms under the biholomorphic duality of flag manifolds. Realized as the OPE ring of A/2-twisted two-dimensional theories with (0,2) supersymmetry, quantum sheaf cohomology generalizes the notion of quantum cohomology. Complete descriptions of quantum sheaf cohomology have been obtained for abelian gauged linear sigma models (GLSMs) and for nonabelian GLSMs describing Grassmannians. In this paper we continue to explore the quantum sheaf cohomology of nonabelian theories. We first propose a method to compute the generating relations for (0,2) GLSMs with (2,2) locus. We apply this method to derive the quantum sheaf cohomology of products of Grassmannians and flag manifolds. The dual deformation associated with the biholomorphic duality gives rise to an explicit IR duality of two A/2-twisted (0,2) gauge theories.



قيم البحث

اقرأ أيضاً

78 - Jirui Guo , Hao Zou 2021
We compute the quantum cohomology of symplectic flag manifolds. Symplectic flag manifolds can be described by non-abelian GLSMs with superpotential. Although the ring relations cannot be directly read off from the equations of motion on the Coulomb b ranch due to complication introduced by the non-abelian gauge symmetry, it can be shown that they can be extracted from the localization formula in a gauge-invariant form. Our result is general for all symplectic flag manifolds, which reduces to previously established results on symplectic Grassmannians and complete symplectic flag manifolds derived by other means. We also explain why a (0,2) deformation of the GLSM does not give rise to a deformation of the quantum cohomology.
In this paper we study the quantum sheaf cohomology of Grassmannians with deformations of the tangent bundle. Quantum sheaf cohomology is a (0,2) deformation of the ordinary quantum cohomology ring, realized as the OPE ring in A/2-twisted theories. Q uantum sheaf cohomology has previously been computed for abelian gauged linear sigma models (GLSMs); here, we study (0,2) deformations of nonabelian GLSMs, for which previous methods have been intractable. Combined with the classical result, the quantum ring structure is derived from the one-loop effective potential. We also utilize recent advances in supersymmetric localization to compute A/2 correlation functions and check the general result in examples. In this paper we focus on physics derivations and examples; in a companion paper, we will provide a mathematically rigorous derivation of the classical sheaf cohomology ring.
We give a combinatorial Chevalley formula for an arbitrary weight, in the torus-equivariant $K$-group of semi-infinite flag manifolds, which is expressed in terms of the quantum alcove model. As an application, we prove the Chevalley formula for anti -dominant fundamental weights in the (small) torus-equivariant quantum $K$-theory $QK_T(G/B)$ of the flag manifold $G/B$; this has been a longstanding conjecture about the multiplicative structure of $QK_T(G/B)$. Moreover, in type $A_{n-1}$, we prove that the so-called quantum Grothendieck polynomials indeed represent Schubert classes in the (non-equivariant) quantum $K$-theory $QK(SL_n/B)$; we also obtain very explicit information about the coefficients in the respective Chevalley formula.
72 - D. Kotschick , D.K. Thung 2019
We discuss the complex geometry of two complex five-dimensional Kahler manifolds which are homogeneous under the exceptional Lie group $G_2$. For one of these manifolds rigidity of the complex structure among all Kahlerian complex structures was prov ed by Brieskorn, for the other one we prove it here. We relate the Kahler assumption in Brieskorns theorem to the question of existence of a complex structure on the six-dimensional sphere, and we compute the Chern numbers of all $G_2$-invariant almost complex structures on these manifolds.
91 - Zhentao Lu 2015
For a class of monadic deformations of the tangent bundles over nef-Fano smooth projective toric varieties, we study the correlators using quantum sheaf cohomology. We prove a summation formula for the correlators, confirming a conjecture by McOrist and Melnikov in physics literature. This generalizes the Szenes-Vergne proof of Toric Residue Mirror Conjecture for hypersurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا