ترغب بنشر مسار تعليمي؟ اضغط هنا

Interacting fermions in narrow-gap semiconductors with band inversion

77   0   0.0 ( 0 )
 نشر من قبل Maxim Dzero
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly unconventional behavior of the thermodynamic response functions has been experimentally observed in a narrow gap semiconductor samarium hexaboride. Motivated by these observations, we use renormalization group technique to investigate many-body instabilities in the f-orbital narrow gap semiconductors with band inversion in the limit of weak coupling. After projecting out the double occupancy of the f-orbital states, we formulate a low-energy theory describing the interacting particles in two hybridized electron- and hole-like bands. The interactions are assumed to be weak and short-ranged. We take into account the difference between the effective masses of the quasiparticles in each band. Upon carrying out the renormalization group analysis we find that there is only one stable fixed point corresponding to the excitonic instability with time-reversal symmetry breaking for small enough mismatch between the effective masses.

قيم البحث

اقرأ أيضاً

79 - Jan M. Tomczak 2018
We review many-body effects, their microscopic origin, as well as their impact onto thermoelectricity in correlated narrow-gap semiconductors. Members of this class---such as FeSi and FeSb$_2$---display an unusual temperature dependence in various ob servables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie-Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators---such as Ce$_3$Bi$_4$Pt$_3$ for which we present new results---and propose a general classification of paramagnetic insulators. From the latter FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we advert to new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.
Wide band gap semiconductors are essential for todays electronic devices and energy applications due to their high optical transparency, as well as controllable carrier concentration and electrical conductivity. There are many categories of materials that can be defined as wide band gap semiconductors. The most intensively investigated are transparent conductive oxides (TCOs) such as ITO and IGZO used in displays, carbides and nitrides used in power electronics, as well as emerging halides (e.g. CuI) and 2D electronic materials used in various optoelectronic devices. Chalcogen-based (S, Se, Te) wide band gap semiconductors are less heavily investigated but stand out due to their propensity for p-type doping, high mobilities, high valence band positions (i.e. low ionization potentials), and broad applications in electronic devices such as CdTe solar cells. This manuscript provides a review of wide band gap chalcogenide semiconductors. First, we outline general materials design parameters of high performing transparent conductors. We proceed to summarize progress in wide band gap (Eg > 2 eV) chalcogenide materials, such as II-VI MCh binaries, CuMCh2 chalcopyrites, Cu3MCh4 sulvanites, mixed anion layered CuMCh(O,F), and 2D materials, among others, and discuss computational predictions of potential new candidates in this family, highlighting their optical and electrical properties. We finally review applications of chalcogenide wide band gap semiconductors, e.g. photovoltaic and photoelectrochemical solar cells, transparent transistors, and diodes, that employ wide band gap chalcogenides as either an active or passive layer. By examining, categorizing, and discussing prospective directions in wide band gap chalcogenides, this review aims to inspire continued research on this emerging class of transparent conductors and to enable future innovations for optoelectronic devices.
118 - W. Zawadzki , T. M. Rusin 2008
Theory of trembling motion [Zitterbewegung (ZB)] of charge carriers in various narrow-gap materials is reviewed. Nearly free electrons in a periodic potential, InSb-type semiconductors, bilayer graphene, monolayer graphene and carbon nanotubes are co nsidered. General features of ZB are emphasized. It is shown that, when the charge carriers are prepared in the form of Gaussian wave packets, the ZB has a transient character with the decay time of femtoseconds in graphene and picoseconds in nanotubes. Zitterbewegung of electrons in graphene in the presence of an external magnetic field is mentioned. A similarity of ZB in semiconductors to that of relativistic electrons in a vacuum is stressed. Possible ways of observing the trembling motion in solids are mentioned.
81 - Vieri Mastropietro 2016
Interacting spinning fermions with strong quasi-random disorder are analyzed via rigorous Renormalization Group (RG) methods combined with KAM techniques. The correlations are written in terms of an expansion whose convergence follows from number-the oretical properties of the frequency and cancellations due to Pauli principle. A striking difference appears between spinless and spinning fermions; in the first case there are no relevant effective interactions while in presence of spin an additional relevant quartic term is present in the RG flow. The large distance exponential decay of the correlations present in the non interacting case, consequence of the single particle localization, is shown to persist in the spinning case only for temperatures greater than a power of the many body interaction, while in the spinless case this happens up to zero temperature.
The physical properties of the semiconductor FeSi with very narrow band gap, anomalous behavior of the magnetic susceptibility and metal-insulator transition at elevated temperatures attract gross interest due to the still controversial theoretical u nderstanding of their origin. On one side the purely band like mechanism of the gap formation in FeSi at low temperature is well established, on other side a number of experiments and their theoretical interpretation suggest a rich physics of strong correlations at finite temperature. In this work we use an ab-initio scheme based on the Random Phase Approximation and Local Spin Density Approximation (RPA@LSDA) to reveal the role of the electron correlation effects in FeSi extending it by applying a fixed spin moment constraint. In the parameter free framework we show that correlation effects essentially alter the one-electron LSDA results leading to the formation of an additional state with finite magnetic moment on Fe, whose energy is almost degenerate with the non-magnetic ground state. This explains the results of high field experiments, which found a first-order meta-magnetic phase transition into a metallic ferromagnetic state. Our results suggest a strongly correlated nature of the low-energy excitations in FeSi. From our super-cells calculations we reveal that these excitations are local and exhibit a Kondo-like behavior since a strong antiferromagnetic screening is present.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا