ﻻ يوجد ملخص باللغة العربية
Wide band gap semiconductors are essential for todays electronic devices and energy applications due to their high optical transparency, as well as controllable carrier concentration and electrical conductivity. There are many categories of materials that can be defined as wide band gap semiconductors. The most intensively investigated are transparent conductive oxides (TCOs) such as ITO and IGZO used in displays, carbides and nitrides used in power electronics, as well as emerging halides (e.g. CuI) and 2D electronic materials used in various optoelectronic devices. Chalcogen-based (S, Se, Te) wide band gap semiconductors are less heavily investigated but stand out due to their propensity for p-type doping, high mobilities, high valence band positions (i.e. low ionization potentials), and broad applications in electronic devices such as CdTe solar cells. This manuscript provides a review of wide band gap chalcogenide semiconductors. First, we outline general materials design parameters of high performing transparent conductors. We proceed to summarize progress in wide band gap (Eg > 2 eV) chalcogenide materials, such as II-VI MCh binaries, CuMCh2 chalcopyrites, Cu3MCh4 sulvanites, mixed anion layered CuMCh(O,F), and 2D materials, among others, and discuss computational predictions of potential new candidates in this family, highlighting their optical and electrical properties. We finally review applications of chalcogenide wide band gap semiconductors, e.g. photovoltaic and photoelectrochemical solar cells, transparent transistors, and diodes, that employ wide band gap chalcogenides as either an active or passive layer. By examining, categorizing, and discussing prospective directions in wide band gap chalcogenides, this review aims to inspire continued research on this emerging class of transparent conductors and to enable future innovations for optoelectronic devices.
Ultrawide-band-gap (UWBG) semiconductors are promising for fast, compact, and energy-efficient power-electronics devices. Their wider band gaps result in higher breakdown electric fields that enable high-power switching with a lower energy loss. Yet,
We study the physical properties of Zn$X$ ($X$=O, S, Se, Te) and Cd$X$ ($X$=O, S, Se, Te) in the zinc-blende, rock-salt, and wurtzite structures using the recently developed fully $ab$ $initio$ pseudo-hybrid Hubbard density functional ACBN0. We find
Antimony sulfide (Sb2S3) and selenide (Sb2Se3) have emerged as promising earth-abundant alternatives among thin-film photovoltaic compounds. A distinguishing feature of these materials is their anisotropic crystal structures, which are composed of qu
Optical properties of ZnMnO layers grown at low temperature by Atomic Layer Deposition and Metalorganic Vapor Phase Epitaxy are discussed and compared to results obtained for ZnMnS samples. Present results suggest a double valence of Mn ions in ZnO l
We discovered that perovskite (Ba,La)SnO3 can have excellent carrier mobility even though its band gap is large. The Hall mobility of Ba0.98La0.02SnO3 crystals with the n-type carrier concentration of sim 8-10times10 19 cm-3 is found to be sim 103 cm