ترغب بنشر مسار تعليمي؟ اضغط هنا

A regularity result for the bound states of $N$-body Schrodinger operators: Blow-ups and Lie manifolds

303   0   0.0 ( 0 )
 نشر من قبل Victor Nistor
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove regularity estimates for the eigenfunctions of Schrodinger type operators whose potentials have inverse square singularities and uniform radial limits at infinity. In particular, the usual $N$-body operators are covered by our result; in that case, the weight is in terms of the (euclidean) distance to the collision planes. The technique of proof is based on blow-ups and Lie manifolds. More precisely, we first blow-up the spheres at infinity of the collision planes to obtain the Georgescu-Vasy compactification and then we blow-up the collision planes. We carefully investigate how the Lie manifold structure and the associated data (metric, Sobolev spaces, differential operators) change with each blow-up. Our method applies also to higher order operators and matrices of scalar operators.


قيم البحث

اقرأ أيضاً

169 - Mirela Kohr , Victor Nistor 2020
We study {em $ abla$-Sobolev spaces} and {em $ abla$-differential operators} with coefficients in general Hermitian vector bundles on Riemannian manifolds, stressing a coordinate free approach that uses connections (which are typically denoted $ abla $). These concepts arise naturally from Partial Differential Equations, including some that are formulated on plain Euclidean domains, such as the weighted Sobolev spaces used to study PDEs on singular domains. We prove several basic properties of the $ abla$-Sobolev spaces and of the $ abla$-differential operators on general manifolds. For instance, we prove mapping properties for our differential operators and independence of the $ abla$-Sobolev spaces on the choices of the connection $ abla$ with respect to totally bounded perturbations. We introduce a {em Frechet finiteness condition} (FFC) for totally bounded vector fields, which is satisfied, for instance, by open subsets of manifolds with bounded geometry. When (FFC) is satisfied, we provide several equivalent definitions of our $ abla$-Sobolev spaces and of our $ abla$-differential operators. We examine in more detail the particular case of domains in the Euclidean space, including the case of weighted Sobolev spaces. We also introduce and study the notion of a {em $ abla$-bidifferential} operator (a bilinear version of differential operators), obtaining results similar to those obtained for $ abla$-differential operators. Bilinear differential operators are necessary for a global, geometric discussion of variational problems. We tried to write the paper so that it is accessible to a large audience.
In this paper, we establish a local Lie theory for relative Rota-Baxter operators of weight $1$. First we recall the category of relative Rota-Baxter operators of weight $1$ on Lie algebras and construct a cohomology theory for them. We use the secon d cohomology group to study infinitesimal deformations of relative Rota-Baxter operators and modified $r$-matrices. Then we introduce a cohomology theory of relative Rota-Baxter operators on a Lie group. We construct the differentiation functor from the category of relative Rota-Baxter operators on Lie groups to that on Lie algebras, and extend it to the cohomology level by proving Van Est theorems between the two cohomology theories. Finally, we integrate a relative Rota-Baxter operator of weight 1 on a Lie algebra to a local relative Rota-Baxter operator on the corresponding Lie group, and show that the local integration and differentiation are adjoint to each other.
113 - Nadine Badr 2012
We prove a Meyers type regularity estimate for approximate solutions of second order elliptic equations obtained by Galerkin methods. The proofs rely on interpolation results for Sobolev spaces on graphs. Estimates for second order elliptic operators on rather general graphs are also obtained.
262 - Ming Chen , Jiefeng Liu , Yao Ma 2021
Based on the differential graded Lie algebra controlling deformations of an $n$-Lie algebra with a representation (called an n-LieRep pair), we construct a Lie n-algebra, whose Maurer-Cartan elements characterize relative Rota-Baxter operators on n-L ieRep pairs. The notion of an n-pre-Lie algebra is introduced, which is the underlying algebraic structure of the relative Rota-Baxter operator. We give the cohomology of relative Rota-Baxter operators and study infinitesimal deformations and extensions of order m deformations to order m+1 deformations of relative Rota-Baxter operators through the cohomology groups of relative Rota-Baxter operators. Moreover, we build the relation between the cohomology groups of relative Rota-Baxter operators on n-LieRep pairs and those on (n+1)-LieRep pairs by certain linear functions.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspac e of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا