ﻻ يوجد ملخص باللغة العربية
In situ electron microscopy is a key tool for understanding the mechanisms driving novel phenomena in 2D structures. Unfortunately, due to various practical challenges, technologically relevant 2D heterostructures prove challenging to address with electron microscopy. Here, we use the differential phase contrast imaging technique to build a methodology for probing local electrostatic fields during electrical operation with nanoscale precision in such materials. We find that by combining a traditional DPC setup with a high pass filter, we can largely eliminate electric fluctuations emanating from short-range atomic potentials. With this method, a priori electric field expectations can be directly compared with experimentally derived values to readily identify inhomogeneities and potentially problematic regions. We use this platform to analyze the electric field and charge density distribution across layers of hBN and MoS2.
Motivated by recent advances on local conductance measurement techniques at the nanoscale, timely questions are being raised about what possible information can be extracted from a disordered material by selectively interrogating its transport proper
At the interface between complex insulating oxides, novel phases with interesting properties may occur, such as the metallic state reported in the LaAlO3/SrTiO3 system. While this state has been predicted and reported to be confined at the interface,
Transition metal dichalcogenide monolayers such as MoSe2,MoS2 and WSe2 are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report spectrally sharp, spatially localized emission in monolayer MoSe2. We fin
The paper concerns the nanopowder high-speed, $10^4$ - $10^9$ s${}^{-1}$, compaction processes modeling by a two-dimensional granular dynamics method. Nanoparticles interaction, in addition to known contact laws, included dispersive attraction, forma
2D materials offer an ideal platform to study the strain fields induced by individual atomic defects, yet challenges associated with radiation damage have so-far limited electron microscopy methods to probe these atomic-scale strain fields. Here, we