ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, Magneto-optics and Charge tuning

103   0   0.0 ( 0 )
 نشر من قبل Bernhard Urbaszek
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal dichalcogenide monolayers such as MoSe2,MoS2 and WSe2 are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report spectrally sharp, spatially localized emission in monolayer MoSe2. We find this quantum dot like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to -4, as for 2D excitons in this material. In a charge tunable sample we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage. The control of the emission properties of these quantum dot like emitters paves the way for further engineering of the light matter interaction in these atomically thin materials.

قيم البحث

اقرأ أيضاً

Modern electronic devices heavily rely on the accurate control of charge and spin of electrons. The emergence of controllable valley degree of freedom brings new possibilities and presents a promising prospect towards valleytronics. Recently, valley excitation selected by chiral optical pumping has been observed in monolayer MoS2. In this work, we report polarized photoluminescence (PL) measurements for monolayer MoSe2, another member of the family of transition-metal-dichalcogenides (MX2), and observe drastic difference from the outcomes of MoS2. In particular, we identify a valley polarization (VP) up to 70% for B exciton, while that for A exciton is less than 3%. Besides, we also find a small but finite negative VP for A- trion. These results reveal several new intra- and inter-valley scattering processes which significantly affect valley polarization, hence provide new insights into exciton physics in monolayer MX2 and possible valleytronic applications.
In monolayer semiconductor transition metal dichalcogenides, the exciton-phonon interaction is expected to strongly affect the photocarrier dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation laser frequency in monolayer MoSe2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M). Oscillatory behavior is also observed in the steady-state emission linewidth and in timeresolved photoluminescence excitation data, which reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role played by phonons in the exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.
Quantum emitters in layered materials are promising candidates for applications in nanophotonics. Here we present a technique based on charge transfer to graphene for measuring the charge transition levels ($rm E_t$) of fluorescent defects in a wide bandgap 2D material, and apply it to quantum emitters in hexagonal boron nitride (hBN). Our results will aid in identifying the atomic structures of quantum emitters in hBN, as well as practical applications since $rm E_t$ determines defect charge states and plays a key role in photodynamics.
Discrete scale invariance (DSI) is a phenomenon featuring intriguing log-periodicity which can be rarely observed in quantum systems. Here we report the log-periodic quantum oscillations in the magnetoresistance (MR) and the Hall traces of HfTe5 crys tals, which reveals the appearance of DSI. The oscillations show the same logB-periodicity in the behavior of MR and Hall, indicating an overall effect of the DSI on the transport properties. Moreover, the DSI feature in the Hall resistance signals its close relation to the carriers. Combined with theoretical simulations, we further clarify the origin of the log-periodic oscillations and the DSI in the topological materials. Our work evidences the universality of the DSI in the Dirac materials and paves way for the full understanding of the novel phenomenon.
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surfac e is exclusively fundamental for monolayer InSe. It leads to the extensive modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures $T_c sim 55-75$ K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a charge density wave that emerged at a temperature far above the corresponding $T_c$. Having included non-adiabatic effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase occurs in the system. In addition, monolayer InSe becomes dynamically stable by including non-adiabatic effects for different carrier concentrations at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا