ﻻ يوجد ملخص باللغة العربية
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: [|P|_{L^2(Omega,W)}leq C(mathcal B_2(W))^{{2}}.] Here $mathcal B_2(W)$ is the Bekolle-Bonami constant for the matrix weight $W$ and $C$ is a constant that is independent of the weight $W$ but depends upon the dimension and the domain.
In this paper we investigate the regularity properties of weighted Bergman projections for smoothly bounded pseudo-convex domains of finite type in $mathbb{C}^{n}$. The main result is obtained for weights equal to a non negative rational power of the
In this note we show that the weighted $L^{2}$-Sobolev estimates obtained by P. Charpentier, Y. Dupain & M. Mounkaila for the weighted Bergman projection of the Hilbert space $L^{2}left(Omega,dmu_{0}right)$ where $Omega$ is a smoothly bounded pseudoc
A radial weight $omega$ belongs to the class $widehat{mathcal{D}}$ if there exists $C=C(omega)ge 1$ such that $int_r^1 omega(s),dsle Cint_{frac{1+r}{2}}^1omega(s),ds$ for all $0le r<1$. Write $omegaincheck{mathcal{D}}$ if there exist constants $K=K(o
We give a proof that every space of weighted square-integrable holomorphic functions admits an equivalent weight whose Bergman kernel has zeroes. Here the weights are equivalent in the sense that they determine the same space of holomorphic functions
We prove some characterizations of Schatten class Toeplitz operators on Bergman spaces of tube domains over symmetric cones for small exponents.