ﻻ يوجد ملخص باللغة العربية
We give a proof that every space of weighted square-integrable holomorphic functions admits an equivalent weight whose Bergman kernel has zeroes. Here the weights are equivalent in the sense that they determine the same space of holomorphic functions. Additionally, a family of radial weights in $L^1(mathbb{C})$ whose associated Bergman kernels have infinitely many zeroes is exhibited.
A radial weight $omega$ belongs to the class $widehat{mathcal{D}}$ if there exists $C=C(omega)ge 1$ such that $int_r^1 omega(s),dsle Cint_{frac{1+r}{2}}^1omega(s),ds$ for all $0le r<1$. Write $omegaincheck{mathcal{D}}$ if there exist constants $K=K(o
Bounded and compact differences of two composition operators acting from the weighted Bergman space $A^p_omega$ to the Lebesgue space $L^q_ u$, where $0<q<p<infty$ and $omega$ belongs to the class $mathcal{D}$ of radial weights satisfying a two-sided
We establish a weighted inequality for the Bergman projection with matrix weights for a class of pseudoconvex domains. We extend a result of Aleman-Constantin and obtain the following estimate for the weighted norm of $P$: [|P|_{L^2(Omega,W)}leq C(ma
We present a new characterization of Muckenhoupt $A_{infty}$-weights whose logarithm is in $mathrm{VMO}(mathbb{R})$ in terms of vanishing Carleson measures on $mathbb{R}_+^2$ and vanishing doubling weights on $mathbb{R}$. This also gives a novel desc
Most characterizations of interpolating sequences for Bergman spaces include the condition that the sequence be uniformly discrete in the hyperbolic metric. We show that if the notion of interpolation is suitably generalized, two of these characteriz