ﻻ يوجد ملخص باللغة العربية
The maximum possible throughput (or the rate of job completion) of a multi-server system is typically the sum of the service rates of individual servers. Recent work shows that launching multiple replicas of a job and canceling them as soon as one copy finishes can boost the throughput, especially when the service time distribution has high variability. This means that redundancy can, in fact, create synergy among servers such that their overall throughput is greater than the sum of individual servers. This work seeks to find the fundamental limit of the throughput boost achieved by job replication and the optimal replication policy to achieve it. While most previous works consider upfront replication policies, we expand the set of possible policies to delayed launch of replicas. The search for the optimal adaptive replication policy can be formulated as a Markov Decision Process, using which we propose two myopic replication policies, MaxRate and AdaRep, to adaptively replicate jobs. In order to quantify the optimality gap of these and other policies, we derive upper bounds on the service capacity, which provide fundamental limits on the throughput of queueing systems with redundancy.
We investigate the limits of thermometry using quantum probes at thermal equilibrium within the Bayesian approach. We consider the possibility of engineering interactions between the probes in order to enhance their sensitivity, as well as feedback d
In cloud computing systems, assigning a task to multiple servers and waiting for the earliest copy to finish is an effective method to combat the variability in response time of individual servers, and reduce latency. But adding redundancy may result
We consider the problem of decomposing the total mutual information conveyed by a pair of predictor random variables about a target random variable into redundant, unique and synergistic contributions. We focus on the relationship between redundant i
In a system of three stochastic variables, the Partial Information Decomposition (PID) of Williams and Beer dissects the information that two variables (sources) carry about a third variable (target) into nonnegative information atoms that describe r
In phase retrieval we want to recover an unknown signal $boldsymbol xinmathbb C^d$ from $n$ quadratic measurements of the form $y_i = |langle{boldsymbol a}_i,{boldsymbol x}rangle|^2+w_i$ where $boldsymbol a_iin mathbb C^d$ are known sensing vectors a