ﻻ يوجد ملخص باللغة العربية
Search engines can quickly response a hyperlink list according to query keywords. However, when a query is complex, developers need to repeatedly refine the search keywords and open a large number of web pages to find and summarize answers. Many research works of question and answering (Q and A) system attempt to assist search engines by providing simple, accurate and understandable answers. However, without original semantic contexts, these answers lack explainability, making them difficult for users to trust and adopt. In this paper, a brain-inspired search engine assistant named DeveloperBot based on knowledge graph is proposed, which aligns to the cognitive process of human and has the capacity to answer complex queries with explainability. Specifically, DeveloperBot firstly constructs a multi-layer query graph by splitting a complex multi-constraint query into several ordered constraints. Then it models the constraint reasoning process as subgraph search process inspired by the spreading activation model of cognitive science. In the end, novel features of the subgraph will be extracted for decision-making. The corresponding reasoning subgraph and answer confidence will be derived as explanations. The results of the decision-making demonstrate that DeveloperBot can estimate the answers and answer confidences with high accuracy. We implement a prototype and conduct a user study to evaluate whether and how the direct answers and the explanations provided by DeveloperBot can assist developers information needs.
Knowledge Graph (KG) reasoning that predicts missing facts for incomplete KGs has been widely explored. However, reasoning over Temporal KG (TKG) that predicts facts in the future is still far from resolved. The key to predict future facts is to thor
This article surveys engineering and neuroscientific models of planning as a cognitive function, which is regarded as a typical function of fluid intelligence in the discussion of general intelligence. It aims to present existing planning models as r
The intelligent question answering (IQA) system can accurately capture users search intention by understanding the natural language questions, searching relevant content efficiently from a massive knowledge-base, and returning the answer directly to
Knowledge graphs have been demonstrated to be an effective tool for numerous intelligent applications. However, a large amount of valuable knowledge still exists implicitly in the knowledge graphs. To enrich the existing knowledge graphs, recent year
Completion through the embedding representation of the knowledge graph (KGE) has been a research hotspot in recent years. Realistic knowledge graphs are mostly related to time, while most of the existing KGE algorithms ignore the time information. A