ترغب بنشر مسار تعليمي؟ اضغط هنا

Room-Temperature Superconductivity in Boron-Nitrogen Doped Lanthanum Superhydride

80   0   0.0 ( 0 )
 نشر من قبل Yanfeng Ge
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent theoretical and experimental studies of hydrogen-rich materials at megabar pressures (i.e., >100 GPa) have led to the discovery of very high-temperature superconductivity in these materials. Lanthanum superhydride LaH$_{10}$ has been of particular focus as the first material to exhibit a superconducting critical temperature (T$_c$) near room temperature. Experiments indicate that the use of ammonia borane as the hydrogen source can increase the conductivity onset temperatures of lanthanum superhydride to as high as 290 K. Here we examine the doping effects of B and N atoms on the superconductivity of LaH$_{10}$ in its fcc (Fm-3m) clathrate structure at megabar pressures. Doping at H atomic positions strengthens the H$_{32}$ cages of the structure to give higher phonon frequencies that enhance the Debye frequency and thus the calculated T$_c$. The predicted T$_c$ can reach 288 K in LaH$_{9.985}$N$_{0.015}$ within the average high-symmetry structure at 240 GPa.



قيم البحث

اقرأ أيضاً

The use of high pressure to realize superconductivity in the vicinity of room temperature has a long history, much of it focused on achieving this in hydrogen rich materials. This paper provides a brief overview of the work presented at this May 2018 conference, together with background on motivation and techniques, the theoretical predictions of superconductivity in lanthanum hydride, and the subsequent experimental confirmation. Theoretical calculations using density functional based structure search methods combined with BCS type models predicted a new class of dense, hydrogen rich materials superhydrides with superconducting critical temperatures in the vicinity of room temperature at and above 200 GPa pressures. The existence of a series of these phases in the La H system was subsequently confirmed experimentally, and techniques were developed for their syntheses and characterization, including measurements of structural and transport properties, at megabar pressures. Four probe electrical transport measurements of a cubic phase identified as LaH10 display signatures of superconductivity at temperatures above 260 K near 200 GPa. The results are supported by pseudo four probe conductivity measurements, critical current determinations, low-temperature xray diffraction, and magnetic susceptibility measurements. The measured high Tc is in excellent agreement with the original calculations. The experiments also reveal additional superconducting phases with Tc between 150 K and above 260 K. This effort highlights the novel physics in hydrogen-rich materials at high densities, the success of materials by design in the discovery and creation of new materials, and the possibility of new classes of superconductors Tc at and above room temperature.
117 - K.-W. Lee , W. E. Pickett 2004
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger tha n the corresponding quantity in MgB2 that drives its high Tc, leading to very large electron-phonon matrix elements. The calculated coupling strength lambda ~ 0.5 leads to T_c in the 5-10 K range and makes phonon coupling the likely mechanism. Higher doping should increase T_c somewhat, but effects of three dimensionality primarily on the density of states keep doped diamond from having a T_c closer to that of MgB2.
In this work, we show that the same theoretical tools that successfully explain other hydrides systems under pressure seem to be at odds with the recently claimed conventional room temperature superconductivity of the carbonaceous sulfur hydride. We support our conclusions with I) the absence of a dominant low-enthalpy stoichiometry and crystal structure in the ternary phase diagram. II) Only the thermodynamics of C-doping phases appears to be marginally competing in enthalpy against H$_3$S. III) Accurate results of the transition temperature given by ab initio Migdal-Eliashberg calculations differ by more than 110 K to recently theoretical claims explaining the high-temperature superconductivity in carbonaceous-hydrogen sulfide. A novel mechanism of superconductivity or a breakdown of current theories in this system is possibly behind the disagreement.
We examine the effects of the low-level substitution of S atoms by C and Si atoms on the superconductivity of H$_3$S with the $Imbar{3}m$ structure at megabar pressure. The hole doping can fine-tune the Fermi energy to reach the electronic density-of -states peak maximizing the electron-phonon coupling. This can boost the critical temperature from the original 203 K to 289 K and 283 K, respectively, for H$_3$S$_{0.962}$C$_{0.038}$ at 260 GPa and H$_3$S$_{0.960}$Si$_{0.040}$ at 230 GPa. The former may provide an explanation for the recent experimental observation of room-temperature superconductivity in a highly compressed C-S-H system [Nature 586, 373-377 (2020)]. Our work opens a new avenue for substantially raising the critical temperatures of hydrogen-rich materials.
It is a honor to write a contribution on this memorial for Sandro Massidda. For both of us, at different stages of our life, Sandro was first and foremost a friend. We both admired his humble, playful and profound approach to life and physics. In thi s contribution we describe the route which permitted to meet a long-standing challenge in solid state physics, i.e. room temperature superconductivity. In less than 20 years the Tc of conventional superconductors, which in the last century had been widely believed to be limited to 25 K, was raised from 40 K in MgB2 to 265 K in LaH10. This discovery was enabled by the development and application of computational methods for superconductors, a field in which Sandro Massidda played a major role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا