ﻻ يوجد ملخص باللغة العربية
We show an efficient way to compute wide-angle or all-sky statistics of galaxy intrinsic alignment in three-dimensional configuration space. For this purpose, we expand the two-point correlation function using a newly introduced spin-dependent tripolar spherical harmonic basis. Therefore, the angular dependences on the two line-of-sight (LOS) directions pointing to each pair of objects, which are degenerate with each other in the conventional analysis under the small-angle or plane-parallel (PP) approximation, are unambiguously decomposed. By means of this, we, for the first time, compute the wide-angle auto and cross correlations between intrinsic ellipticities, number densities and velocities of galaxies, and compare them with the PP-limit results. For the ellipticity-ellipticity and density-ellipticity correlations, we find more than $10%$ deviation from the PP-limit results if the opening angle between two LOS directions exceeds $30^circ - 50^circ$. It is also shown that even if the PP-limit result is strictly zero, the non-vanishing correlation is obtained over the various scales, arising purely from the curved-sky effects. Our results indicate the importance of the data analysis not relying on the PP approximation in order to determine the cosmological parameters more precisely and/or find new physics via ongoing and forthcoming wide-angle galaxy surveys.
The Alcock-Paczynski (AP) effect is a geometrical distortion in three-dimensional observed galaxy statistics. In anticipation of precision cosmology based on ongoing and upcoming all-sky galaxy surveys, we build an efficient method to compute the AP-
The line-of-sight peculiar velocities of galaxies contribute to their observed redshifts, breaking the translational invariance of galaxy clustering down to a rotational invariance around the observer. This becomes important when the line-of-sight di
Given the important role that the galaxy bispectrum has recently acquired in cosmology and the scale and precision of forthcoming galaxy clustering observations, it is timely to derive the full expression of the large-scale bispectrum going beyond ap
We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large
We study the impact of lensing corrections on modeling cross correlations between CMB lensing and galaxies, cosmic shear and galaxies, and galaxies in different redshift bins. Estimating the importance of these corrections becomes necessary in the li