ﻻ يوجد ملخص باللغة العربية
We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys such as Euclid, SPHEREx and SKA, however, we show that the Doppler term must be included. The effect of these terms is dominated by the magnification due to relativistic aberration effects and the slope of the galaxy redshift distribution and it generally mimics the effect of the local type primordial non-Gaussianity with the effective nonlinearity parameter $f_{rm NL}^{rm eff}$ of a few, we show that this would affect forecasts on measurements of $f_{rm NL}$ at low-redshift. Our results show that a survey at low redshift with large number density over a wide area of the sky could detect the Doppler term with a signal-to-noise ratio of $sim 1-20$, depending on survey specifications.
Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect d
We perform theoretical and numerical studies of the full relativistic two-point galaxy correlation function, considering the linear-order scalar and tensor perturbation contributions and the wide-angle effects. Using the gauge-invariant relativistic
The growth history of large-scale structure in the Universe is a powerful probe of the cosmological model, including the nature of dark energy. We study the growth rate of cosmic structure to redshift $z = 0.9$ using more than $162{,}000$ galaxy reds
We show an efficient way to compute wide-angle or all-sky statistics of galaxy intrinsic alignment in three-dimensional configuration space. For this purpose, we expand the two-point correlation function using a newly introduced spin-dependent tripol
The two-point correlation function of the galaxy distribution is a key cosmological observable that allows us to constrain the dynamical and geometrical state of our Universe. To measure the correlation function we need to know both the galaxy positi