ترغب بنشر مسار تعليمي؟ اضغط هنا

Distributed Multi-object Tracking under Limited Field of View Sensors

225   0   0.0 ( 0 )
 نشر من قبل Hoa Van Nguyen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel textit{label consensus approach} that reduces label inconsistency caused by objects movements from one nodes limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solutions real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios. We also release source code at https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT for our fusion method to foster developments in DMOT algorithms.



قيم البحث

اقرأ أيضاً

We consider the challenging problem of online planning for a team of agents to autonomously search and track a time-varying number of mobile objects under the practical constraint of detection range limited onboard sensors. A standard POMDP with a va lue function that either encourages discovery or accurate tracking of mobile objects is inadequate to simultaneously meet the conflicting goals of searching for undiscovered mobile objects whilst keeping track of discovered objects. The planning problem is further complicated by misdetections or false detections of objects caused by range limited sensors and noise inherent to sensor measurements. We formulate a novel multi-objective POMDP based on information theoretic criteria, and an online multi-object tracking filter for the problem. Since controlling multi-agent is a well known combinatorial optimization problem, assigning control actions to agents necessitates a greedy algorithm. We prove that our proposed multi-objective value function is a monotone submodular set function; consequently, the greedy algorithm can achieve a (1-1/e) approximation for maximizing the submodular multi-objective function.
UAV swarms have triggered wide concern due to their potential application values in recent years. While there are studies proposed in terms of the architecture design for UAV swarms, two main challenges still exist: (1) Scalability, supporting a larg e scale of vehicles; (2) Versatility, integrating diversified missions. To this end, a multi-layered and distributed architecture for mission oriented miniature fixed-wing UAV swarms is presented in this paper. The proposed architecture is built on the concept of modularity. It divides the overall system to five layers: low-level control, high-level control, coordination, communication and human interaction layers, and many modules that can be viewed as black boxes with interfaces of inputs and outputs. In this way, not only the complexity of developing a large system can be reduced, but also the versatility of supporting diversified missions can be ensured. Furthermore, the proposed architecture is fully distributed that each UAV performs the decision-making procedure autonomously so as to achieve better scalability. Moreover, different kinds of aerial platforms can be feasibly extended by using the control allocation matrices and the integrated hardware box. A prototype swarm system based on the proposed architecture is built and the proposed architecture is evaluated through field experiments with a scale of 21 fixed-wing UAVs. Particularly, to the best of our knowledge, this paper is the first work which successfully demonstrates formation flight, target recognition and tracking missions within an integrated architecture for fixed-wing UAV swarms through field experiments.
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di stance metric. The key challenges to increase tracking accuracy lie in data association and track life cycle management. We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules to provide robust and data-driven tracking results. First, we learn how to fuse features from 2D images and 3D LiDAR point clouds to capture the appearance and geometric information of an object. Second, we propose to learn a metric that combines the Mahalanobis and feature distances when comparing a track and a new detection in data association. And third, we propose to learn when to initialize a track from an unmatched object detection. Through extensive quantitative and qualitative results, we show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
The ability to simultaneously track and reconstruct multiple objects moving in the scene is of the utmost importance for robotic tasks such as autonomous navigation and interaction. Virtually all of the previous attempts to map multiple dynamic objec ts have evolved to store individual objects in separate reconstruction volumes and track the relative pose between them. While simple and intuitive, such formulation does not scale well with respect to the number of objects in the scene and introduces the need for an explicit occlusion handling strategy. In contrast, we propose a map representation that allows maintaining a single volume for the entire scene and all the objects therein. To this end, we introduce a novel multi-object TSDF formulation that can encode multiple object surfaces at any given location in the map. In a multiple dynamic object tracking and reconstruction scenario, our representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. We evaluate the proposed TSDF++ formulation on a public synthetic dataset and demonstrate its ability to preserve reconstructions of occluded surfaces when compared to the standard TSDF map representation.
Most end-to-end Multi-Object Tracking (MOT) methods face the problems of low accuracy and poor generalization ability. Although traditional filter-based methods can achieve better results, they are difficult to be endowed with optimal hyperparameters and often fail in varying scenarios. To alleviate these drawbacks, we propose a LiDAR-based 3D MOT framework named FlowMOT, which integrates point-wise motion information with the traditional matching algorithm, enhancing the robustness of the motion prediction. We firstly utilize a scene flow estimation network to obtain implicit motion information between two adjacent frames and calculate the predicted detection for each old tracklet in the previous frame. Then we use Hungarian algorithm to generate optimal matching relations with the ID propagation strategy to finish the tracking task. Experiments on KITTI MOT dataset show that our approach outperforms recent end-to-end methods and achieves competitive performance with the state-of-the-art filter-based method. In addition, ours can work steadily in the various-speed scenarios where the filter-based methods may fail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا