ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Objective Multi-Agent Planning for Jointly Discovering and Tracking Mobile Object

89   0   0.0 ( 0 )
 نشر من قبل Hoa Van Nguyen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the challenging problem of online planning for a team of agents to autonomously search and track a time-varying number of mobile objects under the practical constraint of detection range limited onboard sensors. A standard POMDP with a value function that either encourages discovery or accurate tracking of mobile objects is inadequate to simultaneously meet the conflicting goals of searching for undiscovered mobile objects whilst keeping track of discovered objects. The planning problem is further complicated by misdetections or false detections of objects caused by range limited sensors and noise inherent to sensor measurements. We formulate a novel multi-objective POMDP based on information theoretic criteria, and an online multi-object tracking filter for the problem. Since controlling multi-agent is a well known combinatorial optimization problem, assigning control actions to agents necessitates a greedy algorithm. We prove that our proposed multi-objective value function is a monotone submodular set function; consequently, the greedy algorithm can achieve a (1-1/e) approximation for maximizing the submodular multi-objective function.



قيم البحث

اقرأ أيضاً

We study the problem of minimizing the resource capacity of autonomous agents cooperating to achieve a shared task. More specifically, we consider high-level planning for a team of homogeneous agents that operate under resource constraints in stochas tic environments and share a common goal: given a set of target locations, ensure that each location will be visited infinitely often by some agent almost surely. We formalize the dynamics of agents by consumption Markov decision processes. In a consumption Markov decision process, the agent has a resource of limited capacity. Each action of the agent may consume some amount of the resource. To avoid exhaustion, the agent can replenish its resource to full capacity in designated reload states. The resource capacity restricts the capabilities of the agent. The objective is to assign target locations to agents, and each agent is only responsible for visiting the assigned subset of target locations repeatedly. Moreover, the assignment must ensure that the agents can carry out their tasks with minimal resource capacity. We reduce the problem of finding target assignments for a team of agents with the lowest possible capacity to an equivalent graph-theoretical problem. We develop an algorithm that solves this graph problem in time that is emph{polynomial} in the number of agents, target locations, and size of the consumption Markov decision process. We demonstrate the applicability and scalability of the algorithm in a scenario where hundreds of unmanned underwater vehicles monitor hundreds of locations in environments with stochastic ocean currents.
We consider the challenging problem of tracking multiple objects using a distributed network of sensors. In the practical setting of nodes with limited field of views (FoVs), computing power and communication resources, we develop a novel distributed multi-object tracking algorithm. To accomplish this, we first formalise the concept of label consistency, determine a sufficient condition to achieve it and develop a novel textit{label consensus approach} that reduces label inconsistency caused by objects movements from one nodes limited FoV to another. Second, we develop a distributed multi-object fusion algorithm that fuses local multi-object state estimates instead of local multi-object densities. This algorithm: i) requires significantly less processing time than multi-object density fusion methods; ii) achieves better tracking accuracy by considering Optimal Sub-Pattern Assignment (OSPA) tracking errors over several scans rather than a single scan; iii) is agnostic to local multi-object tracking techniques, and only requires each node to provide a set of estimated tracks. Thus, it is not necessary to assume that the nodes maintain multi-object densities, and hence the fusion outcomes do not modify local multi-object densities. Numerical experiments demonstrate our proposed solutions real-time computational efficiency and accuracy compared to state-of-the-art solutions in challenging scenarios. We also release source code at https://github.com/AdelaideAuto-IDLab/Distributed-limitedFoV-MOT for our fusion method to foster developments in DMOT algorithms.
Multi-agent Markov Decision Processes (MMDPs) arise in a variety of applications including target tracking, control of multi-robot swarms, and multiplayer games. A key challenge in MMDPs occurs when the state and action spaces grow exponentially in t he number of agents, making computation of an optimal policy computationally intractable for medium- to large-scale problems. One property that has been exploited to mitigate this complexity is transition independence, in which each agents transition probabilities are independent of the states and actions of other agents. Transition independence enables factorization of the MMDP and computation of local agent policies but does not hold for arbitrary MMDPs. In this paper, we propose an approximate transition dependence property, called $delta$-transition dependence and develop a metric for quantifying how far an MMDP deviates from transition independence. Our definition of $delta$-transition dependence recovers transition independence as a special case when $delta$ is zero. We develop a polynomial time algorithm in the number of agents that achieves a provable bound on the global optimum when the reward functions are monotone increasing and submodular in the agent actions. We evaluate our approach on two case studies, namely, multi-robot control and multi-agent patrolling example.
In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly degraded in outcom e when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. To cater to this rather major shortcoming, this paper investigates a non-parametric behavior learning method for multi-agent decision making, which underpins an alternate data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used for the determination of optimal control actions. This non-parametric predictive control framework attains the noteworthy key advantage of alleviating the heavy computational burden commonly encountered in the optimization procedures otherwise involved. Such requisite optimization procedures are typical in existing methodologies requiring open-loop input/output measurement data collection and parametric system identification. Then with a conservative approximation of probabilistic chance constraints for the MPC problem, a resulting deterministic optimization problem is formulated and solved effectively. This intuitive data-driven approach is also shown to preserve good robustness properties (even in the inevitable existence of parametric uncertainties that naturally arise in the typical system identification process). Finally, a multi-drone system is used to demonstrate the practical appeal and highly effective outcome of this promising development.
Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some di stance metric. The key challenges to increase tracking accuracy lie in data association and track life cycle management. We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules to provide robust and data-driven tracking results. First, we learn how to fuse features from 2D images and 3D LiDAR point clouds to capture the appearance and geometric information of an object. Second, we propose to learn a metric that combines the Mahalanobis and feature distances when comparing a track and a new detection in data association. And third, we propose to learn when to initialize a track from an unmatched object detection. Through extensive quantitative and qualitative results, we show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا