ترغب بنشر مسار تعليمي؟ اضغط هنا

Extensions of dissipative operators with closable imaginary part

36   0   0.0 ( 0 )
 نشر من قبل Christoph Fischbacher
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a dissipative operator $A$ on a complex Hilbert space $mathcal{H}$ such that the quadratic form $fmapsto mbox{Im}langle f,Afrangle$ is closable, we give a necessary and sufficient condition for an extension of $A$ to still be dissipative. As applications, we describe all maximally accretive extensions of strictly positive symmetric operators and all maximally dissipative extensions of a highly singular first-order operator on the interval.



قيم البحث

اقرأ أيضاً

Let $A$ and $(-widetilde{A})$ be dissipative operators on a Hilbert space $mathcal{H}$ and let $(A,widetilde{A})$ form a dual pair, i.e. $Asubsetwidetilde{A}^*$, resp. $widetilde{A}subset A^*$. We present a method of determining the proper dissipativ e extensions $widehat{A}$ of this dual pair, i.e. $Asubset widehat{A}subsetwidetilde{A}^*$ provided that $mathcal{D}(A)capmathcal{D}(widetilde{A})$ is dense in $mathcal{H}$. Applications to symmetric operators, symmetric operators perturbed by a relatively bounded dissipative operator and more singular differential operators are discussed. Finally, we investigate the stability of the numerical range of the different dissipative extensions.
In our article [15] description in terms of abstract boundary conditions of all $m$-accretive extensions and their resolvents of a closed densely defined sectorial operator $S$ have been obtained. In particular, if ${mathcal{H},Gamma}$ is a boundary pair of $S$, then there is a bijective correspondence between all $m$-accretive extensions $tilde{S}$ of $S$ and all pairs $langle mathbf{Z},Xrangle$, where $mathbf{Z}$ is a $m$-accretive linear relation in $mathcal{H}$ and $X:mathrm{dom}(mathbf{Z})tooverline{mathrm{ran}(S_{F})}$ is a linear operator such that: [ |Xe|^2leqslantmathrm{Re}(mathbf{Z}(e),e)_{mathcal{H}}quadforall einmathrm{dom}(mathbf{Z}). ] As is well known the operator $S$ admits at least one $m$-sectorial extension, the Friedrichs extension. In this paper, assuming that $S$ has non-unique $m$-sectorial extension, we established additional conditions on a pair $langle mathbf{Z},Xrangle$ guaranteeing that corresponding $tilde{S}$ is $m$-sectorial extension of $S$. As an application, all $m$-sectorial extensions of a nonnegative symmetric operator in a planar model of two point interactions are described.
90 - Ching-Wei Ho 2020
Let $x_0$ be a possibly-unbounded self-adjoint random variable, $tildesigma_alpha$ and $sigma_beta$ are semicircular variables with variances $alphageq 0$ and $beta>0$ respectively (when $alpha = 0$, $tildesigma_alpha = 0$). Suppose $x_0$, $sigma_alp ha$, and $tildesigma_beta$ are all freely independent. We compute the Brown measure of $x_0+tildesigma_alpha+isigma_beta$, extending the previous computations which only work for bounded self-adjoint random variable $x_0$. The Brown measure in this unbounded case has the same structure as in the bounded case; it has connections to the free convolution $x_0+sigma_{alpha+beta}$. We also compute the example where $x_0$ is Cauchy-distributed.
We investigate minimal operator corresponding to operator differential expression with exit from space, study its selfadjoint extensions, also for one particular selfadjoint extension corresponding to boundary value problem with some rational functio n of eigenparameter in boundary condition establish asymptotics of spectrum and derive trace formula
Building on techniques developed by Cowen and Gallardo-Guti{e}rrez, we find a concrete formula for the adjoint of a composition operator with rational symbol acting on the Hardy space $H^{2}$. We consider some specific examples, comparing our formula with several results that were previously known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا