ﻻ يوجد ملخص باللغة العربية
In our article [15] description in terms of abstract boundary conditions of all $m$-accretive extensions and their resolvents of a closed densely defined sectorial operator $S$ have been obtained. In particular, if ${mathcal{H},Gamma}$ is a boundary pair of $S$, then there is a bijective correspondence between all $m$-accretive extensions $tilde{S}$ of $S$ and all pairs $langle mathbf{Z},Xrangle$, where $mathbf{Z}$ is a $m$-accretive linear relation in $mathcal{H}$ and $X:mathrm{dom}(mathbf{Z})tooverline{mathrm{ran}(S_{F})}$ is a linear operator such that: [ |Xe|^2leqslantmathrm{Re}(mathbf{Z}(e),e)_{mathcal{H}}quadforall einmathrm{dom}(mathbf{Z}). ] As is well known the operator $S$ admits at least one $m$-sectorial extension, the Friedrichs extension. In this paper, assuming that $S$ has non-unique $m$-sectorial extension, we established additional conditions on a pair $langle mathbf{Z},Xrangle$ guaranteeing that corresponding $tilde{S}$ is $m$-sectorial extension of $S$. As an application, all $m$-sectorial extensions of a nonnegative symmetric operator in a planar model of two point interactions are described.
We prove an extension theorem for ultraholomorphic classes defined by so-called Braun-Meise-Taylor weight functions and transfer the proofs from the single weight sequence case from V. Thilliez [28] to the weight function setting. We are following a
We consider densely defined sectorial operators $A_pm$ that can be written in the form $A_pm=pm iS+V$ with $mathcal{D}(A_pm)=mathcal{D}(S)=mathcal{D}(V)$, where both $S$ and $Vgeq varepsilon>0$ are assumed to be symmetric. We develop an analog to the
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2)
We report on the experimental observation of corner surface solitons localized at the edges joining planar interfaces of hexagonal waveguide array with uniform nonlinear medium. The face angle between these interfaces has a strong impact on the thres