ترغب بنشر مسار تعليمي؟ اضغط هنا

Vid2Actor: Free-viewpoint Animatable Person Synthesis from Video in the Wild

148   0   0.0 ( 0 )
 نشر من قبل Chung-Yi Weng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given an in-the-wild video of a person, we reconstruct an animatable model of the person in the video. The output model can be rendered in any body pose to any camera view, via the learned controls, without explicit 3D mesh reconstruction. At the core of our method is a volumetric 3D human representation reconstructed with a deep network trained on input video, enabling novel pose/view synthesis. Our method is an advance over GAN-based image-to-image translation since it allows image synthesis for any pose and camera via the internal 3D representation, while at the same time it does not require a pre-rigged model or ground truth meshes for training, as in mesh-based learning. Experiments validate the design choices and yield results on synthetic data and on real videos of diverse people performing unconstrained activities (e.g. dancing or playing tennis). Finally, we demonstrate motion re-targeting and bullet-time rendering with the learned models.



قيم البحث

اقرأ أيضاً

Generating free-viewpoint videos is critical for immersive VR/AR experience but recent neural advances still lack the editing ability to manipulate the visual perception for large dynamic scenes. To fill this gap, in this paper we propose the first a pproach for editable photo-realistic free-viewpoint video generation for large-scale dynamic scenes using only sparse 16 cameras. The core of our approach is a new layered neural representation, where each dynamic entity including the environment itself is formulated into a space-time coherent neural layered radiance representation called ST-NeRF. Such layered representation supports fully perception and realistic manipulation of the dynamic scene whilst still supporting a free viewing experience in a wide range. In our ST-NeRF, the dynamic entity/layer is represented as continuous functions, which achieves the disentanglement of location, deformation as well as the appearance of the dynamic entity in a continuous and self-supervised manner. We propose a scene parsing 4D label map tracking to disentangle the spatial information explicitly, and a continuous deform module to disentangle the temporal motion implicitly. An object-aware volume rendering scheme is further introduced for the re-assembling of all the neural layers. We adopt a novel layered loss and motion-aware ray sampling strategy to enable efficient training for a large dynamic scene with multiple performers, Our framework further enables a variety of editing functions, i.e., manipulating the scale and location, duplicating or retiming individual neural layers to create numerous visual effects while preserving high realism. Extensive experiments demonstrate the effectiveness of our approach to achieve high-quality, photo-realistic, and editable free-viewpoint video generation for dynamic scenes.
We propose a novel approach for 3D video synthesis that is able to represent multi-view video recordings of a dynamic real-world scene in a compact, yet expressive representation that enables high-quality view synthesis and motion interpolation. Our approach takes the high quality and compactness of static neural radiance fields in a new direction: to a model-free, dynamic setting. At the core of our approach is a novel time-conditioned neural radiance fields that represents scene dynamics using a set of compact latent codes. To exploit the fact that changes between adjacent frames of a video are typically small and locally consistent, we propose two novel strategies for efficient training of our neural network: 1) An efficient hierarchical training scheme, and 2) an importance sampling strategy that selects the next rays for training based on the temporal variation of the input videos. In combination, these two strategies significantly boost the training speed, lead to fast convergence of the training process, and enable high quality results. Our learned representation is highly compact and able to represent a 10 second 30 FPS multi-view video recording by 18 cameras with a model size of just 28MB. We demonstrate that our method can render high-fidelity wide-angle novel views at over 1K resolution, even for highly complex and dynamic scenes. We perform an extensive qualitative and quantitative evaluation that shows that our approach outperforms the current state of the art. We include additional video and information at: https://neural-3d-video.github.io/
We present a method that learns a spatiotemporal neural irradiance field for dynamic scenes from a single video. Our learned representation enables free-viewpoint rendering of the input video. Our method builds upon recent advances in implicit repres entations. Learning a spatiotemporal irradiance field from a single video poses significant challenges because the video contains only one observation of the scene at any point in time. The 3D geometry of a scene can be legitimately represented in numerous ways since varying geometry (motion) can be explained with varying appearance and vice versa. We address this ambiguity by constraining the time-varying geometry of our dynamic scene representation using the scene depth estimated from video depth estimation methods, aggregating contents from individual frames into a single global representation. We provide an extensive quantitative evaluation and demonstrate compelling free-viewpoint rendering results.
196 - Liao Wang , Ziyu Wang , Pei Lin 2021
Generating ``bullet-time effects of human free-viewpoint videos is critical for immersive visual effects and VR/AR experience. Recent neural advances still lack the controllable and interactive bullet-time design ability for human free-viewpoint rend ering, especially under the real-time, dynamic and general setting for our trajectory-aware task. To fill this gap, in this paper we propose a neural interactive bullet-time generator (iButter) for photo-realistic human free-viewpoint rendering from dense RGB streams, which enables flexible and interactive design for human bullet-time visual effects. Our iButter approach consists of a real-time preview and design stage as well as a trajectory-aware refinement stage. During preview, we propose an interactive bullet-time design approach by extending the NeRF rendering to a real-time and dynamic setting and getting rid of the tedious per-scene training. To this end, our bullet-time design stage utilizes a hybrid training set, light-weight network design and an efficient silhouette-based sampling strategy. During refinement, we introduce an efficient trajectory-aware scheme within 20 minutes, which jointly encodes the spatial, temporal consistency and semantic cues along the designed trajectory, achieving photo-realistic bullet-time viewing experience of human activities. Extensive experiments demonstrate the effectiveness of our approach for convenient interactive bullet-time design and photo-realistic human free-viewpoint video generation.
Video person re-identification (re-ID) plays an important role in surveillance video analysis. However, the performance of video re-ID degenerates severely under partial occlusion. In this paper, we propose a novel network, called Spatio-Temporal Com pletion network (STCnet), to explicitly handle partial occlusion problem. Different from most previous works that discard the occluded frames, STCnet can recover the appearance of the occluded parts. For one thing, the spatial structure of a pedestrian frame can be used to predict the occluded body parts from the unoccluded body parts of this frame. For another, the temporal patterns of pedestrian sequence provide important clues to generate the contents of occluded parts. With the Spatio-temporal information, STCnet can recover the appearance for the occluded parts, which could be leveraged with those unoccluded parts for more accurate video re-ID. By combining a re-ID network with STCnet, a video re-ID framework robust to partial occlusion (VRSTC) is proposed. Experiments on three challenging video re-ID databases demonstrate that the proposed approach outperforms the state-of-the-art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا