ﻻ يوجد ملخص باللغة العربية
Nonlinear oscillator systems are ubiquitous in biology and physics, and their control is a practical problem in many experimental systems. Here we study this problem in the context of the two models of spatially-coupled oscillators: the complex Ginzburg-Landau equation (CGLE) and a generalization of the CGLE in which oscillators are coupled through an external medium (emCGLE). We focus on external control drives that vary in both space and time. We find that the spatial distribution of the drive signal controls the frequency ranges over which oscillators synchronize to the drive and that boundary conditions strongly influence synchronization to external drives for the CGLE. Our calculations also show that the emCGLE has a low density regime in which a broad range of frequencies can be synchronized for low drive amplitudes. We study the bifurcation structure of these models and find that they are very similar to results for the driven Kuramoto model, a system with no spatial structure. We conclude by discussing the implications of our results for controlling coupled oscillator systems such as the social amoebae emph{Dictyostelium} and populations of BZ catalytic particles using spatially structured external drives.
Frequency locking in forced oscillatory systems typically occurs in V-shaped domains in the plane spanned by the forcing frequency and amplitude, the so-called Arnold tongues. Here, we show that if the medium is spatially extended and monotonically h
We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adj
Using a homotopic family of boundary eigenvalue problems for the mean-field $alpha^2$-dynamo with helical turbulence parameter $alpha(r)=alpha_0+gammaDeltaalpha(r)$ and homotopy parameter $beta in [0,1]$, we show that the underlying network of diabol
We explore the consequences of incorporating parity and time reversal ($mathcal{PT}$) symmetries on the dynamics of nonreciprocal light propagation exhibited by a class of nonuniform periodic structures known as chirped $mathcal{PT}$-symmetric fiber
The present work studies the influence of nonlocal spatial coupling on the existence of localized structures in 1-dimensional extended systems. We consider systems described by a real field with a nonlocal coupling that has a linear dependence on the