ترغب بنشر مسار تعليمي؟ اضغط هنا

Clustered chimera states in delay coupled oscillator systems

129   0   0.0 ( 0 )
 نشر من قبل Gautam Sethia Dr.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate chimera states in a ring of identical phase oscillators coupled in a time-delayed and spatially non-local fashion. We find novel clustered chimera states that have spatially distributed phase coherence separated by incoherence with adjacent coherent regions in anti-phase. The existence of such time-delay induced phase clustering is further supported through solutions of a generalized functional self-consistency equation of the mean field. Our results highlight an additional mechanism for cluster formation that may find wider practical applications.



قيم البحث

اقرأ أيضاً

We study the nonlinear dynamics of two delay-coupled neural systems each modelled by excitable dynamics of FitzHugh-Nagumo type and demonstrate that bistability between the stable fixed point and limit cycle oscillations occurs for sufficiently large delay times and coupling strength. As the mechanism for these delay-induced oscillations we identify a saddle-node bifurcation of limit cycles.
We use a generic model for type-I excitability (known as the SNIPER or SNIC model) to describe the local dynamics of nodes within a network in the presence of non-zero coupling delays. Utilising the method of the Master Stability Function, we investi gate the stability of the zero-lag synchronised dynamics of the network nodes and its dependence on the two coupling parameters, namely the coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model for type-II excitability), there are parameter ranges where the stability of synchronisation depends on the coupling strength and delay time. One important implication of these results is that there exist complex networks for which the adding of inhibitory links in a small-world fashion may not only lead to a loss of stable synchronisation, but may also restabilise synchronisation or introduce multiple transitions between synchronisation and desynchronisation. To underline the scope of our results, we show using the Stuart-Landau model that such multiple transitions do not only occur in excitable systems, but also in oscillatory ones.
146 - Yusuke Suda , Koji Okuda 2015
Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera sta tes are chaotic transient and finally collapse into the completely synchronous solution. In this paper, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that chimera states can be stable even without taking the continuous limit, which we call the persistent chimera state.
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro nization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.
Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized $m$-splay states constituting a special subclass of phase-locked states with vanishing $m$th orde r parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا