ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological spin-plasma waves

92   0   0.0 ( 0 )
 نشر من قبل Dmitry K. Efimkin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface of a topological insulator hosts Dirac electronic states with the spin-momentum locking, which constrains spin orientation perpendicular to electron momentum. As a result, collective plasma excitations in the interacting Dirac liquid manifest themselves as coupled charge- and spin-waves. Here we demonstrate that the presence of the spin component enables effective coupling between plasma waves and spin waves at interfaces between the surface of a topological insulator and insulating magnet. Moreover, the helical nature of spin-momentum locking textures provides the phase winding in the coupling between the spin and plasma waves that makes the spectrum of hybridized spin-plasma modes to be topologically nontrivial. We also show that such topological modes lead to a large thermal Hall response.



قيم البحث

اقرأ أيضاً

We propose a topological characterization of Hamiltonians describing classical waves. Applying it to the magnetostatic surface spin waves that are important in spintronics applications, we settle the speculation over their topological origin. For a c lass of classical systems that includes spin waves driven by dipole-dipole interactions, we show that the topology is characterized by vortex lines in the Brillouin zone in such a way that the symplectic structure of Hamiltonian mechanics plays an essential role. We define winding numbers around these vortex lines and identify them to be the bulk topological invariants for a class of semimetals. Exploiting the bulk-edge correspondence appropriately reformulated for these classical waves, we predict that surface modes appear but not in a gap of the bulk frequency spectrum. This feature, consistent with the magnetostatic surface spin waves, indicates a broader realm of topological phases of matter beyond spectrally gapped ones.
We study the spin waves of the triangular skyrmion crystal that emerges in a two dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii-Moriya interactions, Zeeman coupling and uniaxial anisotropy. T he calculated spin wave bands have a finite Berry curvature that, in some cases, leads to non-zero Chern numbers, making this system topologically distinct from conventional magnonic systems. We compute the edge spin-waves, expected from the bulk-boundary correspondence principle, and show that they are chiral, which makes them immune to elastic backscattering. Our results illustrate how topological phases can occur in self-generated emergent superlattices at the mesoscale.
We present an experimental study of time refraction of spin waves propagating in microscopic waveguides under the influence of time-varying magnetic fields. Using space- and time-resolved Brillouin light scattering microscopy, we demonstrate that the broken translational symmetry along the time coordinate can be used to in- or decrease the energy of spin waves during their propagation. This allows for a broadband and controllable shift of the spin-wave frequency. Using an integrated design of spin-wave waveguide and microscopic current line for the generation of strong, nanosecond-long, magnetic field pulses, a conversion efficiency up to 39% of the carrier spin-wave frequency is achieved, significantly larger compared to photonic systems. Given the strength of the magnetic field pulses and its strong impact on the spin-wave dispersion relation, the effect of time refraction can be quantified on a length scale comparable to the spin-wave wavelength. Furthermore, we utilize time refraction to excite spin-wave bursts with pulse durations in the nanosecond range and a frequency shift depending on the pulse polarity.
65 - N. Kirova , S. Brazovskii 2000
The rich order parameter of Spin Density Waves allows for unusual object of a complex topological nature: a half-integer dislocation combined with a semi-vortex of a staggered magnetization. It becomes energetically preferable to ordinary dislocation due to enhanced Coulomb interactions in the semiconducting regime. Generation of these objects changes e.g. the narrow band noise frequency.
Spin waves have been studied experimentally and by simulations in 1000 nm side equilateral triangular Permalloy dots in the Buckle state (B, with in-plane field along the triangle base) and the Y state (Y, with in-plane field perpendicular to the bas e). The excess of exchange energy at the triangles edges creates channels that allow effective spin wave propagation along the edges inthe B state. These quasi one-dimensional spin waves emitted by the vertex magnetic charges gradually transform from propagating to standing due to interference and(as pointed out by simulations) areweakly affected by smallvariations of the aspect ratio(from equilateral to isosceles dots) or by interdot dipolar interaction present in our dot arrays. Spin waves excited in the Y state have mainly a two-dimensional character.Propagation of the spin waves along the edge states in triangular dots opens possibilities for creation of new and versatile spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا