ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Analysis for a family of Stochastic Reaction-Diffusion Equations

81   0   0.0 ( 0 )
 نشر من قبل Kunwoo Kim
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a reaction-diffusion equation of the type [ partial_tpsi = partial^2_xpsi + V(psi) + lambdasigma(psi)dot{W} qquadtext{on $(0,,infty)timesmathbb{T}$}, ] subject to a nice initial value and periodic boundary, where $mathbb{T}=[-1,,1]$ and $dot{W}$ denotes space-time white noise. The reaction term $V:mathbb{R}tomathbb{R}$ belongs to a large family of functions that includes Fisher--KPP nonlinearities [$V(x)=x(1-x)$] as well as Allen-Cahn potentials [$V(x)=x(1-x)(1+x)$], the multiplicative nonlinearity $sigma:mathbb{R}tomathbb{R}$ is non random and Lipschitz continuous, and $lambda>0$ is a non-random number that measures the strength of the effect of the noise $dot{W}$. The principal finding of this paper is that: (i) When $lambda$ is sufficiently large, the above equation has a unique invariant measure; and (ii) When $lambda$ is sufficiently small, the collection of all invariant measures is a non-trivial line segment, in particular infinite. This proves an earlier prediction of Zimmerman et al. (2000). Our methods also say a great deal about the structure of these invariant measures.



قيم البحث

اقرأ أيضاً

In this paper we develop a metastability theory for a class of stochastic reaction-diffusion equations exposed to small multiplicative noise. We consider the case where the unperturbed reaction-diffusion equation features multiple asymptotically stab le equilibria. When the system is exposed to small stochastic perturbations, it is likely to stay near one equilibrium for a long period of time, but will eventually transition to the neighborhood of another equilibrium. We are interested in studying the exit time from the full domain of attraction (in a function space) surrounding an equilibrium and therefore do not assume that the domain of attraction features uniform attraction to the equilibrium. This means that the boundary of the domain of attraction is allowed to contain saddles and limit cycles. Our method of proof is purely infinite dimensional, i.e., we do not go through finite dimensional approximations. In addition, we address the multiplicative noise case and we do not impose gradient type of assumptions on the nonlinearity. We prove large deviations logarithmic asymptotics for the exit time and for the exit shape, also characterizing the most probable set of shapes of solutions at the time of exit from the domain of attraction.
We establish the existence of solutions to a class of non-linear stochastic differential equation of reaction-diffusion type in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. The solution obtained is the sca ling limit of a sequence of interacting particle systems, and satisfies the martingale problem corresponding to the target differential equation.
127 - Wei Wang , A. J. Roberts 2008
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equat ions with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estimate show that the macroscopic reduced model should be a stochastic ordinary equation which includes the random effect transmitted from the microscopic timescale due to the nonlinear interaction. Numerical simulations of an example stochastic heat equation confirms the predictions of this stochastic modelling theory. This theory empowers us to better model the long time dynamics of complex stochastic systems.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt imes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d ge 3$. Combining this result with properties of the PDE, some methods arising from a low density super-Brownian limit theorem, and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first application confirms a conjecture of Cox and Perkins and the second confirms a conjecture of Ohtsuki et al in the context of certain infinite graphs. An important feature of our general results is that they do not require the process to be attractive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا