ترغب بنشر مسار تعليمي؟ اضغط هنا

Metastability and exit problems for systems of stochastic reaction-diffusion equations

113   0   0.0 ( 0 )
 نشر من قبل Konstantinos Spiliopoulos
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we develop a metastability theory for a class of stochastic reaction-diffusion equations exposed to small multiplicative noise. We consider the case where the unperturbed reaction-diffusion equation features multiple asymptotically stable equilibria. When the system is exposed to small stochastic perturbations, it is likely to stay near one equilibrium for a long period of time, but will eventually transition to the neighborhood of another equilibrium. We are interested in studying the exit time from the full domain of attraction (in a function space) surrounding an equilibrium and therefore do not assume that the domain of attraction features uniform attraction to the equilibrium. This means that the boundary of the domain of attraction is allowed to contain saddles and limit cycles. Our method of proof is purely infinite dimensional, i.e., we do not go through finite dimensional approximations. In addition, we address the multiplicative noise case and we do not impose gradient type of assumptions on the nonlinearity. We prove large deviations logarithmic asymptotics for the exit time and for the exit shape, also characterizing the most probable set of shapes of solutions at the time of exit from the domain of attraction.



قيم البحث

اقرأ أيضاً

We consider a reaction-diffusion equation of the type [ partial_tpsi = partial^2_xpsi + V(psi) + lambdasigma(psi)dot{W} qquadtext{on $(0,,infty)timesmathbb{T}$}, ] subject to a nice initial value and periodic boundary, where $mathbb{T}=[-1,,1]$ a nd $dot{W}$ denotes space-time white noise. The reaction term $V:mathbb{R}tomathbb{R}$ belongs to a large family of functions that includes Fisher--KPP nonlinearities [$V(x)=x(1-x)$] as well as Allen-Cahn potentials [$V(x)=x(1-x)(1+x)$], the multiplicative nonlinearity $sigma:mathbb{R}tomathbb{R}$ is non random and Lipschitz continuous, and $lambda>0$ is a non-random number that measures the strength of the effect of the noise $dot{W}$. The principal finding of this paper is that: (i) When $lambda$ is sufficiently large, the above equation has a unique invariant measure; and (ii) When $lambda$ is sufficiently small, the collection of all invariant measures is a non-trivial line segment, in particular infinite. This proves an earlier prediction of Zimmerman et al. (2000). Our methods also say a great deal about the structure of these invariant measures.
We establish the existence of solutions to a class of non-linear stochastic differential equation of reaction-diffusion type in an infinite-dimensional space, with diffusion corresponding to a given transition kernel. The solution obtained is the sca ling limit of a sequence of interacting particle systems, and satisfies the martingale problem corresponding to the target differential equation.
Tight estimates of exit/containment probabilities are of particular importance in many control problems. Yet, estimating the exit/containment probabilities is non-trivial: even for linear systems (Ornstein-Uhlenbeck processes), the containment probab ility can be computed exactly for only some particular values of the system parameters. In this paper, we derive tight bounds on the containment probability for a class of nonlinear stochastic systems. The core idea is to compare the pull strength (how hard the deterministic part of the system dynamics pulls towards the origin) experienced by the nonlinear system at hand with that of a well-chosen process for which tight estimates of the containment probability are known or can be numerically obtained (e.g. an Ornstein-Uhlenbeck process). Specifically, the main technical contribution of this paper is to define a suitable dominance relationship between the pull strengths of two systems and to prove that this dominance relationship implies an order relationship between their containment probabilities. We also discuss the link with contraction theory and highlight some examples of applications.
133 - Wei Wang , A. J. Roberts 2008
The macroscopic behavior of dissipative stochastic partial differential equations usually can be described by a finite dimensional system. This article proves that a macroscopic reduced model may be constructed for stochastic reaction-diffusion equat ions with cubic nonlinearity by artificial separating the system into two distinct slow-fast time parts. An averaging method and a deviation estimate show that the macroscopic reduced model should be a stochastic ordinary equation which includes the random effect transmitted from the microscopic timescale due to the nonlinear interaction. Numerical simulations of an example stochastic heat equation confirms the predictions of this stochastic modelling theory. This theory empowers us to better model the long time dynamics of complex stochastic systems.
We consider particle systems that are perturbations of the voter model and show that when space and time are rescaled the system converges to a solution of a reaction diffusion equation in dimensions $d ge 3$. Combining this result with properties of the PDE, some methods arising from a low density super-Brownian limit theorem, and a block construction, we give general, and often asymptotically sharp, conditions for the existence of non-trivial stationary distributions, and for extinction of one type. As applications, we describe the phase diagrams of three systems when the parameters are close to the voter model: (i) a stochastic spatial Lotka-Volterra model of Neuhauser and Pacala, (ii) a model of the evolution of cooperation of Ohtsuki, Hauert, Lieberman, and Nowak, and (iii) a continuous time version of the non-linear voter model of Molofsky, Durrett, Dushoff, Griffeath, and Levin. The first application confirms a conjecture of Cox and Perkins and the second confirms a conjecture of Ohtsuki et al in the context of certain infinite graphs. An important feature of our general results is that they do not require the process to be attractive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا