ﻻ يوجد ملخص باللغة العربية
The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode is a promising bosonic code for quantum computation due to its tolerance for noise and all-Gaussian gate set. We present a toolkit for phase-space description and manipulation of GKP encodings that includes Wigner functions for ideal and approximate GKP states, for various types of mixed GKP states, and for GKP-encoded operators. One advantage of a phase-space approach is that Gaussian unitaries, required for computation with GKP codes, correspond to simple transformations on the arguments of Wigner functions. We use this fact and our toolkit to describe GKP error correction, including magic-state preparation, entirely in phase space using operations on Wigner functions. While our focus here is on the square-lattice GKP code, we provide a general framework for GKP codes defined on any lattice.
Quantum repeaters are a promising platform for realizing long-distance quantum communication and thus could form the backbone of a secure quantum internet, a scalable quantum network, or a distributed quantum computer. Repeater protocols that encode
The Gottesman-Kitaev-Preskill (GKP) quantum error correcting code attracts much attention in continuous variable (CV) quantum computation and CV quantum communication due to the simplicity of error correcting routines and the high tolerance against G
In this work, we study the Wigner phase-space representation of qubit states encoded in continuous variables (CV) by using the Gottesman-Kitaev-Preskill (GKP) mapping. We explore a possible connection between resources for universal quantum computati
Graph states are a central resource in measurement-based quantum information processing. In the photonic qubit architecture based on Gottesman-Kitaev-Preskill (GKP) encoding, the generation of high-fidelity graph states composed of realistic, finite-
Continuous-variable quantum-computing (CVQC) is the most scalable implementation of QC to date but requires non-Gaussian resources to allow exponential speedup and quantum correction, using error encoding such as Gottesman-Kitaev-Preskill (GKP) state