ﻻ يوجد ملخص باللغة العربية
The Gottesman-Kitaev-Preskill (GKP) quantum error correcting code attracts much attention in continuous variable (CV) quantum computation and CV quantum communication due to the simplicity of error correcting routines and the high tolerance against Gaussian errors. Since the GKP code state should be regarded as a limit of physically meaningful approximate ones, various approximations have been developed until today, but explicit relations among them are still unclear. In this paper, we rigorously prove the equivalence of these approximate GKP codes with an explicit correspondence of the parameters. We also propose a standard form of the approximate code states in the position representation, which enables us to derive closed-from expressions for the Wigner functions, the inner products, and the average photon numbers in terms of the theta functions. Our results serve as fundamental tools for further analyses of fault-tolerant quantum computation and channel coding using approximate GKP codes.
Continuous-variable quantum-computing (CVQC) is the most scalable implementation of QC to date but requires non-Gaussian resources to allow exponential speedup and quantum correction, using error encoding such as Gottesman-Kitaev-Preskill (GKP) state
Quantum repeaters are a promising platform for realizing long-distance quantum communication and thus could form the backbone of a secure quantum internet, a scalable quantum network, or a distributed quantum computer. Repeater protocols that encode
The Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode is a promising bosonic code for quantum computation due to its tolerance for noise and all-Gaussian gate set. We present a toolkit for phase-space description and manipulatio
Graph states are a central resource in measurement-based quantum information processing. In the photonic qubit architecture based on Gottesman-Kitaev-Preskill (GKP) encoding, the generation of high-fidelity graph states composed of realistic, finite-
In this work, we study the Wigner phase-space representation of qubit states encoded in continuous variables (CV) by using the Gottesman-Kitaev-Preskill (GKP) mapping. We explore a possible connection between resources for universal quantum computati