ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-assembled monolayers of oligophenylenes stiffer than steel and silicon, possibly even stiffer than Si$_3$N$_4$

63   0   0.0 ( 0 )
 نشر من قبل Ioan Baldea
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ioan B^aldea




اسأل ChatGPT حول البحث

To quantify charge transport through molecular junctions fabricated using the conducting probe atomic force microscopy (CP-AFM) platform, information on the number of molecules $N$ per junction is absolutely necessary. $N$ can be currently obtained only via contact mechanics, and the Youngs modulus $E$ of the self-assembled monolayer (SAM) utilized in the key quantity for this approach. The experimental determination of $E$ for SAMs of CP-AFM junctions fabricated using oligophenylene dithiols (OPDn, $1 leq n leq 4$) and gold electrodes turned out to be too challenging. Recent measurements (Z. Xie et al, J. Am. Chem. Soc. 139 (2017) 5696) merely succeeded to provide a low bound estimate ($E approx 58,$GPa). It is this state of affairs that motivated the present theoretical investigation. Our microscopic calculations yield values $E approx 240 pm 6,$GPa for the OPDn SAMs of the aforementioned experimental study, which are larger than those of steel ($ E approx 180 - 200,$GPa) and silicon ($E approx 130 - 185,$GPa). The fact that the presently computed $E$ is much larger than the aforementioned experimental lower bound explain why experimentally measuring $E$ of OPDn SAMs is so challenging. Having $E approx 337 pm 8,$GPa, OPDn SAMs with herringbone arrangement adsorbed on fcc (111)Au are even stiffer than Si$_3$N$_4$ ($E approx 160 - 290,$GPa).

قيم البحث

اقرأ أيضاً

Metal contacts to two-dimensional (2D) semiconductors are ubiquitous in modern electronic and optoelectronic devices. Such contacts are, however, often plagued by strong Fermi level pinning (FLP) effect which reduces the tunability of the Schottky ba rrier height (SBH) and degrades the performance of 2D-semiconductor-based devices. In this work, we show that monolayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ - a recently synthesized 2D material class with exceptional mechanical and electronic properties - exhibit strongly suppressed FLP and wide-range tunable SBH when contacted by metals. An exceptionally large SBH slope parameter of S=0.7 is obtained, which outperform the vast majority of other 2D semiconductors. Such surprising behavior arises from the unique morphology of MoSi$_2$N$_4$ and WSi$_2$N$_4$. The outlying Si-N layer forms a native atomic layer that protects the semiconducting inner-core from the perturbance of metal contacts, thus suppressing the FLP. Our findings reveal the potential of MoSi$_2$N$_4$ and WSi$_2$N$_4$ monolayers as a novel 2D material platform for designing high-performance and energy-efficient 2D nanodevices.
Most properties of liquid water are determined by its hydrogen-bond network. Because forming an aqueous interface requires termination of this network, one might expect the molecular level properties of interfacial water to markedly differ from water in bulk. Intriguingly, much prior experimental and theoretical work has found that, from the perspective of their time-averaged structure and picosecond structural dynamics, hydrogen-bonded OH groups at an air/water interface behave the same as hydrogen-bonded OH groups in bulk liquid water. Here we report the first experimental observation of interfacial waters libration (i.e. frustrated rotation) using the laser-based technique vibrational sum frequency spectroscopy. We find this mode has a frequency of 834 cm$^{-1}$, $approx 165$ cm$^{-1}$ higher than in bulk liquid water at the same temperature and similar to bulk ice. Because libration frequency is proportional to the stiffness of waters rotational potential, this increase suggests that one effect of terminating bulk waters hydrogen bonding network at the air/water interface is retarding rotation of water around intact hydrogen bonds. Because in bulk liquid water the libration plays a key role in stabilizing reaction intermediates and dissipating excess vibrational energy, we expect the ability to probe this mode in interfacial water to open new perspectives on the kinetics of heterogeneous reactions at aqueous interfaces.
Mn has been found to self-assemble into atomic chains running perpendicular to the surface dimer reconstruction on Si(001). They differ from other atomic chains by a striking asymmetric appearance in filled state scanning tunneling microscopy (STM) i mages. This has prompted complicated structural models involving up to three Mn atoms per chain unit. Combining STM, atomic force microscopy and density functional theory we find that a simple necklace-like chain of single Mn atoms reproduces all their prominent features, including their asymmetry not captured by current models. The upshot is a remarkably simpler structure for modelling the electronic and magnetic properties of Mn atom chains on Si(001).
Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two-centuries of investigation, the mechanism underlying why hydronium diffuse s faster than hydroxide in water is still not well understood. Herein, we employ state of the art Density Functional Theory based molecular dynamics, with corrections for nonlocal van der Waals interactions, and self-interaction in the electronic ground state, to model water and the hydrated water ions. At this level of theory, structural diffusion of hydronium preserves the previously recognized concerted behavior. However, by contrast, proton transfer via hydroxide is dominated by stepwise events, arising from a stabilized hyper-coordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron scattering results. Asymmetry in the temporal correlation of proton transfer enables hydronium to diffuse faster than hydroxide.
Conventional impurity doping of deep nanoscale silicon (dns-Si) used in ultra large scale integration (ULSI) faces serious challenges below the 14 nm technology node. We report on a new fundamental effect in theory and experiment, namely the electron ic structure of dns-Si experiencing energy offsets of ca. 1 eV as a function of SiO$_2$- vs. Si$_3$N$_4$-embedding with a few monolayers (MLs). An interface charge transfer (ICT) from dns-Si specific to the anion type of the dielectric is at the core of this effect and arguably nested in quantum-chemical properties of oxygen (O) and nitrogen (N) vs. Si. We investigate the size up to which this energy offset defines the electronic structure of dns-Si by density functional theory (DFT), considering interface orientation, embedding layer thickness, and approximants featuring two Si nanocrystals (NCs); one embedded in SiO$_2$ and the other in Si$_3$N$_4$. Working with synchrotron ultraviolet photoelectron spectroscopy (UPS), we use SiO$_2$- vs. Si$_3$N$_4$-embedded Si nanowells (NWells) to obtain their energy of the top valence band states. These results confirm our theoretical findings and gauge an analytic model for projecting maximum dns-Si sizes for NCs, nanowires (NWires) and NWells where the energy offset reaches full scale, yielding to a clear preference for electrons or holes as majority carriers in dns-Si. Our findings can replace impurity doping for n/p-type dns-Si as used in ultra-low power electronics and ULSI, eliminating dopant-related issues such as inelastic carrier scattering, thermal ionization, clustering, out-diffusion and defect generation. As far as majority carrier preference is concerned, the elimination of those issues effectively shifts the lower size limit of Si-based ULSI devices to the crystalization limit of Si of ca. 1.5 nm and enables them to work also under cryogenic conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا